Application of information theory-based decision support system for high precision modeling of the length-weight relationship (LWR) for five marine shrimps from the northwestern Bay of Bengal

阿卡克信息准则 统计 均方误差 数学 过度拟合 异方差 选型 差异(会计) 线性模型 计量经济学 计算机科学 人工智能 会计 人工神经网络 业务
作者
Gyanaranjan Dash,Sandip Sen,Rajesh Pradhan,Shubhadeep Ghosh,Jose Josileen
出处
期刊:Regional Studies in Marine Science [Elsevier BV]
卷期号:66: 103140-103140
标识
DOI:10.1016/j.rsma.2023.103140
摘要

The study was conducted to develop an information theory-based decision support system to understand the variance distribution structure of the data so that a proper modeling approach could be implemented to explain the relationship between the body length and weight of shrimps. Based on biological reasoning, initially, a log-normal multiplicative error structure was assumed and therefore, a log-linearized model was applied. Secondly, the support for normal additive error structure was assessed by fitting a weighted nonlinear model with a power variance structure (wNLM) to address the heteroscedasticity in shrimp weight. The likelihood support for the error structures was ascertained by comparing the AICc of the two competing models. As the general cut-off criterion (Δ AICc>2.0) did not give conclusive evidence from the scrutiny of the probability density diagnostic plot of the residuals, an alternative model scaling criteria, i.e., Akaike weight (Aw) of 0.9 was used for model selection. The corresponding Δ AICc cut-off score of 4.2 was estimated by regressing the Δ AICc score of the competing model against the Aw scores of the best model. The competing models with Δ AICc > 4.2 were rejected and the alternate models with Aw ≥ 0.9 were selected for modeling the length–weight relationship. Both the models were observed to be well founded, as narrow differences in the root mean squared error (RMSE) were observed. A lower RMSE was almost always observed from wNLM despite a higher Δ AICc score, which indicates that RMSE may not be efficient in detecting the model overfitting issue. Contrary to popular belief, only 26.7% of the datasets exhibited a log-normal error structure, whereas, a normal error structure was evident in 33.3% of the datasets. Interestingly, 40.0% of the datasets showed data ambivalence (Δ AICc < 4.2) and therefore, an Akaike weighted model averaging was performed to reduce model uncertainty for the accurate estimation of model parameters and their confidence intervals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张础锐完成签到,获得积分10
1秒前
沉静海安完成签到,获得积分10
1秒前
苗条的小蜜蜂完成签到 ,获得积分10
2秒前
万能图书馆应助westbobo采纳,获得10
2秒前
li完成签到,获得积分20
3秒前
lin完成签到,获得积分10
4秒前
Lucas应助XJ采纳,获得10
4秒前
今天不学习明天变垃圾完成签到,获得积分10
4秒前
心灵美的修洁完成签到 ,获得积分10
4秒前
爱听歌的从筠完成签到,获得积分10
5秒前
7秒前
1997_Aris发布了新的文献求助10
7秒前
cc完成签到,获得积分10
8秒前
li发布了新的文献求助10
8秒前
打打应助月倚樱落时采纳,获得10
9秒前
踏雪寻梅完成签到,获得积分10
9秒前
王不王发布了新的文献求助10
9秒前
370完成签到,获得积分10
9秒前
研友_VZG7GZ应助decademe采纳,获得10
10秒前
liuxinying完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
111完成签到,获得积分10
12秒前
卫海亦完成签到,获得积分10
12秒前
小W爱吃梨完成签到,获得积分10
13秒前
Pytong完成签到,获得积分20
13秒前
鲸落完成签到,获得积分10
13秒前
鸽子的迷信完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
liuxinying发布了新的文献求助10
15秒前
热心克莉丝完成签到,获得积分10
15秒前
叶叶关注了科研通微信公众号
15秒前
HT发布了新的文献求助10
15秒前
mirsis发布了新的文献求助10
15秒前
Pytong发布了新的文献求助10
16秒前
葡萄又酸又甜完成签到 ,获得积分10
17秒前
小W爱吃梨发布了新的文献求助20
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582