已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of information theory-based decision support system for high precision modeling of the length-weight relationship (LWR) for five marine shrimps from the northwestern Bay of Bengal

阿卡克信息准则 统计 均方误差 数学 过度拟合 异方差 选型 差异(会计) 线性模型 计量经济学 计算机科学 人工智能 人工神经网络 会计 业务
作者
Gyanaranjan Dash,Sandip Sen,Rajesh Pradhan,Shubhadeep Ghosh,Jose Josileen
出处
期刊:Regional Studies in Marine Science [Elsevier BV]
卷期号:66: 103140-103140
标识
DOI:10.1016/j.rsma.2023.103140
摘要

The study was conducted to develop an information theory-based decision support system to understand the variance distribution structure of the data so that a proper modeling approach could be implemented to explain the relationship between the body length and weight of shrimps. Based on biological reasoning, initially, a log-normal multiplicative error structure was assumed and therefore, a log-linearized model was applied. Secondly, the support for normal additive error structure was assessed by fitting a weighted nonlinear model with a power variance structure (wNLM) to address the heteroscedasticity in shrimp weight. The likelihood support for the error structures was ascertained by comparing the AICc of the two competing models. As the general cut-off criterion (Δ AICc>2.0) did not give conclusive evidence from the scrutiny of the probability density diagnostic plot of the residuals, an alternative model scaling criteria, i.e., Akaike weight (Aw) of 0.9 was used for model selection. The corresponding Δ AICc cut-off score of 4.2 was estimated by regressing the Δ AICc score of the competing model against the Aw scores of the best model. The competing models with Δ AICc > 4.2 were rejected and the alternate models with Aw ≥ 0.9 were selected for modeling the length–weight relationship. Both the models were observed to be well founded, as narrow differences in the root mean squared error (RMSE) were observed. A lower RMSE was almost always observed from wNLM despite a higher Δ AICc score, which indicates that RMSE may not be efficient in detecting the model overfitting issue. Contrary to popular belief, only 26.7% of the datasets exhibited a log-normal error structure, whereas, a normal error structure was evident in 33.3% of the datasets. Interestingly, 40.0% of the datasets showed data ambivalence (Δ AICc < 4.2) and therefore, an Akaike weighted model averaging was performed to reduce model uncertainty for the accurate estimation of model parameters and their confidence intervals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到 ,获得积分10
1秒前
雪落六年yyds完成签到,获得积分10
2秒前
jackone完成签到,获得积分10
2秒前
科研通AI2S应助JJ采纳,获得10
7秒前
10秒前
YAN发布了新的文献求助20
14秒前
小球完成签到 ,获得积分10
15秒前
16秒前
20秒前
JamesPei应助礼貌吗采纳,获得10
20秒前
cici发布了新的文献求助10
21秒前
Tao2023发布了新的文献求助10
22秒前
ZJX应助leeyc采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
25秒前
酷波er应助科研通管家采纳,获得10
25秒前
哈基米德应助科研通管家采纳,获得20
25秒前
tuanheqi应助科研通管家采纳,获得150
25秒前
脑洞疼应助科研通管家采纳,获得10
25秒前
Criminology34应助科研通管家采纳,获得10
25秒前
Criminology34应助科研通管家采纳,获得10
25秒前
852应助科研通管家采纳,获得10
25秒前
守墓人发布了新的文献求助10
25秒前
科研通AI6应助伶俐断天采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得30
25秒前
科研通AI6应助科研通管家采纳,获得30
25秒前
领导范儿应助科研通管家采纳,获得10
26秒前
26秒前
共享精神应助科研通管家采纳,获得10
26秒前
26秒前
坦率半雪完成签到,获得积分10
26秒前
27秒前
arisw完成签到,获得积分10
28秒前
wangxiaobin完成签到 ,获得积分10
28秒前
呜呜完成签到,获得积分10
29秒前
29秒前
29秒前
30秒前
chaoswu完成签到,获得积分10
31秒前
石头发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290666
求助须知:如何正确求助?哪些是违规求助? 4442020
关于积分的说明 13828956
捐赠科研通 4324772
什么是DOI,文献DOI怎么找? 2373838
邀请新用户注册赠送积分活动 1369227
关于科研通互助平台的介绍 1333275