Two-Dimensional Conjugation Extended CH-Series Acceptors with a Distinctive A–D–A Character

有机太阳能电池 分子间力 接受者 光伏系统 化学物理 材料科学 分子 光电子学 纳米技术 化学 物理 电气工程 凝聚态物理 有机化学 工程类
作者
Zhaoyang Yao,Xiangjian Wan,Chenxi Li,Yongsheng Chen
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (9): 772-785 被引量:53
标识
DOI:10.1021/accountsmr.3c00093
摘要

ConspectusAs one of the most important indicators for evaluating photovoltaic devices, the power conversion efficiencies (PCEs) for the first-class organic solar cells (OSCs) have reached the level of ∼20%, but they still lag far behind that of over 25% for their inorganic counterparts. With the similar if not better fill factor and short-circuit current, this wide gap of PCEs should be fundamentally attributed to the greatly larger nonradiative energy losses in OSCs, which are usually above 0.2 eV for OSCs but only 0.03–0.04 eV for high-performance inorganic solar cells. Note that the stubbornly severe nonradiative recombination in OSCs is associated with multiple characteristics of organic light-harvesting molecules, such as intrinsically large exciton binding energies and small relative dielectric constants, defective intermolecular packing networks, or more crystal defects caused by the flexibility of large organic molecular skeletons, nonideal nanoscale film morphologies, and so on. All the factors above require that rational design of light-harvesting molecules should be carried out not only at single molecule but also at aggregation levels if further dramatic improvement of PCE is to be achieved for OSCs.In this Account, we will first expound the unique merits of acceptor–donor–acceptor (A–D–A) type light-harvesting materials in frontier orbital distribution, energy level tuning, and intermolecular packings, meanwhile revealing the dominant role of A–D–A type molecules in facilitating charge transfer/transport, suppressing energy loss, and improving photovoltaic performance of OSCs eventually. In light of the conspicuous superiority of A–D–A type molecules, a convincing conclusion can be made that further exploration of novel A–D–A type light-harvesting materials is crucially important to shrink the PCE gap between OSCs and inorganic solar cells. Second, our recent studies for a really exciting A–D–A type molecular platform (CH-series) will be discussed comprehensively, involving various high-performance nonfullerene acceptors (NFAs) with small molecular, dimer-like, and polymerized architectures. Note that the most distinctive feature of CH-series NFAs is two-dimensional (2D) conjugation extension, especially for central units. Therefore, the favorable effects of 2D conjugation extension of these molecules on their fundamental physicochemical properties, intermolecular packing modes, blended film morphologies, photovoltaic parameters, and energy losses of resulting OSCs will be fully discussed. Abiding by the unveiled design rules of high-performance A–D–A type NFAs, the highest PCE of approaching 20% has been achieved for OSCs based on CH-series molecules. The evolution path of previous OSCs is based on traditional materials such as that of PCBM, ITIC, Y6, etc. could be one lesson; CH-series molecules are very likely to offer a great platform capable of achieving record-breaking OSCs along with much decreased energy losses, especially considering their wide and various structural modification possibilities. Finally, despite the rapidly surging PCEs of OSCs, there are still several insurmountable hurdles when attempting to break through bottlenecks existing in OSCs. Therefore, we propose some perspectives that can be further conducted on CH-series NFAs, which may conquer the great challenge of too large energy losses and thus boost OSCs toward commercial applications further.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东方元语应助momo采纳,获得30
刚刚
烟花应助陈陈陈采纳,获得10
刚刚
刚刚
1秒前
初空月儿发布了新的文献求助10
2秒前
平常语山完成签到,获得积分20
2秒前
爱听歌的复天应助cldg采纳,获得10
2秒前
完美世界应助开心千青采纳,获得10
3秒前
小蘑菇应助菜菜采纳,获得10
4秒前
wanci应助Sakura采纳,获得10
4秒前
Lucas完成签到,获得积分10
4秒前
宇称yu发布了新的文献求助10
5秒前
zhouyan完成签到,获得积分10
5秒前
qq发布了新的文献求助10
5秒前
大模型应助库里强采纳,获得10
5秒前
weiba发布了新的文献求助10
5秒前
平常语山发布了新的文献求助10
6秒前
7秒前
土豆发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
小二郎应助cainiao采纳,获得10
12秒前
12秒前
英俊的铭应助weiba采纳,获得10
12秒前
13秒前
bless发布了新的文献求助10
13秒前
敏感的秋凌给敏感的秋凌的求助进行了留言
13秒前
cldg完成签到,获得积分10
13秒前
银鱼在游发布了新的文献求助10
13秒前
14秒前
libe应助Jasmine采纳,获得20
14秒前
科研牛马丫完成签到,获得积分10
14秒前
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704559
求助须知:如何正确求助?哪些是违规求助? 5158120
关于积分的说明 15242392
捐赠科研通 4858539
什么是DOI,文献DOI怎么找? 2607330
邀请新用户注册赠送积分活动 1558287
关于科研通互助平台的介绍 1516105