Enhancing Road Traffic Accident Severity Classification Using the Stacking Method in Machine Learning Models

堆积 计算机科学 选择(遗传算法) 机器学习 人工智能 数据挖掘 核磁共振 物理
作者
Mostafa El Mallahi,Jamal Riffi,Musheer Ahmad,Hamid Tairi,Mohamed Adnane Mahraz
标识
DOI:10.20944/preprints202308.0169.v1
摘要

Road traffic crashes (RTC) have become a significant cause of fatalities worldwide. The number of fatalities resulting from accidents is increasing rapidly each day. Therefore, it is crucial to develop early prediction methods that can assist drivers and riders in understanding accident statistics specific to their region. This includes considering factors such as speed limits, adherence to traffic signs, traffic lights, pedestrian crossings, right of way, weather conditions, negligence, fatigue, and the impact of excessive speed on RTC occurrences. In this paper, a stacking method for enhancing the road traffic accident severity classification using machine learning models is presented which consists of several interesting points. Firstly, it offers a promising approach to tackle the challenges associated with accurately classifying accident severity, including imbalanced datasets and high-dimensional features. By combining the predictions of multiple base models, the stacking method creates a meta-model that improves classification performance. This stacking approach enables the exploitation of diverse model strengths, capturing different aspects of the data and enhancing the overall predictive power. Additionally, the selection of appropriate base models plays a crucial role in the success of the stacking method. The participating models should possess complementary strengths and provide robust predictions. Moreover, effective feature engineering and selection techniques can further enhance the performance of the stacking method. It has been found through experimentation and simulation that suggested stacking method has achieved significantly higher performance compared to other related works.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang发布了新的文献求助10
刚刚
搜集达人应助axis采纳,获得10
1秒前
2秒前
6秒前
8秒前
9秒前
健忘的金完成签到 ,获得积分10
11秒前
哦可完成签到,获得积分10
11秒前
12秒前
SYLH应助NoobMasterZYF采纳,获得10
12秒前
含蓄的绍辉完成签到,获得积分10
13秒前
14秒前
14秒前
今后应助陆驳采纳,获得10
15秒前
zgt01发布了新的文献求助10
16秒前
刘亚赛发布了新的文献求助10
17秒前
琉璃929发布了新的文献求助10
19秒前
小孙的微信完成签到,获得积分10
21秒前
21秒前
CAOHOU给飞快的幻雪的求助进行了留言
25秒前
lyejxusgh发布了新的文献求助10
27秒前
英姑应助xuanhui采纳,获得10
27秒前
琉璃929完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
SYLH应助温城采纳,获得10
30秒前
30秒前
优秀的念双完成签到,获得积分10
30秒前
31秒前
传奇3应助科研通管家采纳,获得10
32秒前
英俊的铭应助科研通管家采纳,获得10
33秒前
赘婿应助科研通管家采纳,获得10
33秒前
Billy应助科研通管家采纳,获得20
33秒前
33秒前
Owen应助科研通管家采纳,获得30
33秒前
小二郎应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
33秒前
33秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824