Enhancing Road Traffic Accident Severity Classification Using the Stacking Method in Machine Learning Models

堆积 计算机科学 选择(遗传算法) 机器学习 人工智能 数据挖掘 核磁共振 物理
作者
Mostafa El Mallahi,Jamal Riffi,Musheer Ahmad,Hamid Tairi,Mohamed Adnane Mahraz
标识
DOI:10.20944/preprints202308.0169.v1
摘要

Road traffic crashes (RTC) have become a significant cause of fatalities worldwide. The number of fatalities resulting from accidents is increasing rapidly each day. Therefore, it is crucial to develop early prediction methods that can assist drivers and riders in understanding accident statistics specific to their region. This includes considering factors such as speed limits, adherence to traffic signs, traffic lights, pedestrian crossings, right of way, weather conditions, negligence, fatigue, and the impact of excessive speed on RTC occurrences. In this paper, a stacking method for enhancing the road traffic accident severity classification using machine learning models is presented which consists of several interesting points. Firstly, it offers a promising approach to tackle the challenges associated with accurately classifying accident severity, including imbalanced datasets and high-dimensional features. By combining the predictions of multiple base models, the stacking method creates a meta-model that improves classification performance. This stacking approach enables the exploitation of diverse model strengths, capturing different aspects of the data and enhancing the overall predictive power. Additionally, the selection of appropriate base models plays a crucial role in the success of the stacking method. The participating models should possess complementary strengths and provide robust predictions. Moreover, effective feature engineering and selection techniques can further enhance the performance of the stacking method. It has been found through experimentation and simulation that suggested stacking method has achieved significantly higher performance compared to other related works.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
honda发布了新的文献求助10
刚刚
小马甲应助陈文文采纳,获得10
刚刚
1秒前
liuz发布了新的文献求助10
1秒前
2秒前
5秒前
咻咻给冰川川的求助进行了留言
5秒前
马上毕业发布了新的文献求助10
6秒前
李健应助honda采纳,获得10
6秒前
Owen应助问问采纳,获得30
6秒前
一进实验室就犯困完成签到,获得积分10
6秒前
打打应助舒适笑容采纳,获得10
7秒前
酷酷的凤凤完成签到,获得积分10
7秒前
bigboss发布了新的文献求助10
7秒前
细腻亦巧完成签到,获得积分10
7秒前
Ava应助jane采纳,获得10
8秒前
9秒前
隐形曼青应助lzw123456采纳,获得10
9秒前
9秒前
跑快点发布了新的文献求助10
10秒前
郑旭辉发布了新的文献求助10
10秒前
周不安发布了新的文献求助10
10秒前
12秒前
王希澳发布了新的文献求助10
13秒前
陈文文发布了新的文献求助10
14秒前
QZ完成签到,获得积分10
14秒前
15秒前
16秒前
问问发布了新的文献求助30
17秒前
QZ发布了新的文献求助10
18秒前
调皮小土豆完成签到,获得积分10
18秒前
研友_VZG7GZ应助跑快点采纳,获得10
20秒前
21秒前
共享精神应助居居采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
orixero应助科研通管家采纳,获得30
22秒前
Candice应助科研通管家采纳,获得10
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
李爱国应助科研通管家采纳,获得10
22秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262967
求助须知:如何正确求助?哪些是违规求助? 2903657
关于积分的说明 8326071
捐赠科研通 2573529
什么是DOI,文献DOI怎么找? 1398397
科研通“疑难数据库(出版商)”最低求助积分说明 654153
邀请新用户注册赠送积分活动 632707