亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing Road Traffic Accident Severity Classification Using the Stacking Method in Machine Learning Models

堆积 计算机科学 选择(遗传算法) 机器学习 人工智能 数据挖掘 核磁共振 物理
作者
Mostafa El Mallahi,Jamal Riffi,Musheer Ahmad,Hamid Tairi,Mohamed Adnane Mahraz
标识
DOI:10.20944/preprints202308.0169.v1
摘要

Road traffic crashes (RTC) have become a significant cause of fatalities worldwide. The number of fatalities resulting from accidents is increasing rapidly each day. Therefore, it is crucial to develop early prediction methods that can assist drivers and riders in understanding accident statistics specific to their region. This includes considering factors such as speed limits, adherence to traffic signs, traffic lights, pedestrian crossings, right of way, weather conditions, negligence, fatigue, and the impact of excessive speed on RTC occurrences. In this paper, a stacking method for enhancing the road traffic accident severity classification using machine learning models is presented which consists of several interesting points. Firstly, it offers a promising approach to tackle the challenges associated with accurately classifying accident severity, including imbalanced datasets and high-dimensional features. By combining the predictions of multiple base models, the stacking method creates a meta-model that improves classification performance. This stacking approach enables the exploitation of diverse model strengths, capturing different aspects of the data and enhancing the overall predictive power. Additionally, the selection of appropriate base models plays a crucial role in the success of the stacking method. The participating models should possess complementary strengths and provide robust predictions. Moreover, effective feature engineering and selection techniques can further enhance the performance of the stacking method. It has been found through experimentation and simulation that suggested stacking method has achieved significantly higher performance compared to other related works.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
英勇的半蕾完成签到,获得积分20
1分钟前
十柒完成签到 ,获得积分10
1分钟前
大个应助新秀微博采纳,获得10
2分钟前
朱明完成签到 ,获得积分10
3分钟前
852应助科研通管家采纳,获得10
3分钟前
4分钟前
新秀微博发布了新的文献求助10
4分钟前
5分钟前
欢喜的文轩完成签到 ,获得积分10
5分钟前
5分钟前
落后的初柳完成签到,获得积分10
5分钟前
cllk发布了新的文献求助10
5分钟前
科研通AI6应助刘小艾采纳,获得10
6分钟前
我是老大应助cllk采纳,获得10
6分钟前
xiaoqian完成签到,获得积分10
6分钟前
6分钟前
cllk完成签到,获得积分10
6分钟前
亲情之友完成签到,获得积分10
7分钟前
7分钟前
亲情之友发布了新的文献求助10
7分钟前
Iron_five完成签到 ,获得积分0
7分钟前
刘小艾发布了新的文献求助10
7分钟前
MchemG应助科研通管家采纳,获得50
7分钟前
MchemG应助科研通管家采纳,获得50
7分钟前
张秉环完成签到 ,获得积分10
7分钟前
2317659604完成签到,获得积分10
7分钟前
望向天空的鱼完成签到 ,获得积分10
7分钟前
兴奋的嚣完成签到 ,获得积分10
9分钟前
wjh完成签到,获得积分10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
hhr完成签到 ,获得积分10
9分钟前
9分钟前
wish完成签到 ,获得积分10
10分钟前
江沅完成签到 ,获得积分10
10分钟前
10分钟前
xmsyq完成签到 ,获得积分10
10分钟前
10分钟前
像个间谍完成签到 ,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558517
求助须知:如何正确求助?哪些是违规求助? 4643605
关于积分的说明 14671250
捐赠科研通 4584908
什么是DOI,文献DOI怎么找? 2515238
邀请新用户注册赠送积分活动 1489315
关于科研通互助平台的介绍 1459954