Real-Time Gas Composition Identification and Concentration Estimation Model for Artificial Olfaction

预处理器 规范化(社会学) 符号 估计理论 信号(编程语言) 算法 生物系统 鉴定(生物学) 计算机科学 人工智能 数学 模式识别(心理学) 算术 程序设计语言 植物 社会学 人类学 生物
作者
Wenwen Zhang,Yuanjin Zheng,Zhiping Lin
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/tie.2023.3306402
摘要

Accurately and quickly identifying the gas composition and estimating the concentration are critical for ensuring industrial gas safety. However, conventional gas discrimination and concentration estimation models are unable to directly employ the raw dynamic response signal of the sensor array to accurately identify gases and estimate their concentrations online. To overcome this limitation, a cascaded approach that combines a dynamic wavelet coefficient map-axial attention network (DWCM-AAN) model for identifying gases and a prelayer normalization weighted dynamic response signal-cosformer (WDRS-cosformer) for estimating the concentration of each gas component is developed in our work. Both models directly employ the real-time dynamic response signals of the sensor array as input without any signal preprocessing. Experimental validation of CO, $\rm \textbf {H}_{2}$ , CO, and $\rm \textbf {H}_{2}$ gas mixture on our fabricated artificial olfaction revealed that the DWCM-AAN model can achieve nearly 100% accuracy in gas identification and enhance identification in real time with fewer labeled data samples. Moreover, our proposed WDRS-cosformer model achieves greater precision in concentration estimation for all different gases compared to existing state-of-the-art concentration estimation methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hui发布了新的文献求助10
1秒前
1秒前
yangjinru完成签到 ,获得积分10
1秒前
1秒前
2秒前
奥福发布了新的文献求助10
3秒前
3秒前
victor完成签到,获得积分10
6秒前
尘扬发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
迷路雨寒应助111采纳,获得20
7秒前
健壮熊猫发布了新的文献求助10
8秒前
mm发布了新的文献求助10
8秒前
psycho完成签到,获得积分10
8秒前
可爱的函函应助悲伤牛蛙采纳,获得10
8秒前
Orange应助hui采纳,获得10
8秒前
sakiecon完成签到,获得积分10
9秒前
yu风应助科研通管家采纳,获得10
9秒前
xlx应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
xlx应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得30
9秒前
共享精神应助科研通管家采纳,获得30
9秒前
9秒前
xlx应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
xlx应助科研通管家采纳,获得10
9秒前
香蕉诗蕊应助科研通管家采纳,获得10
9秒前
xlx应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
xlx应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
yznfly给123的求助进行了留言
16秒前
shl完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604088
求助须知:如何正确求助?哪些是违规求助? 4688919
关于积分的说明 14857074
捐赠科研通 4696569
什么是DOI,文献DOI怎么找? 2541150
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851