Vehicle Trajectory Prediction Considering Multi-feature Independent Encoding Based on Graph Neural Network

弹道 计算机科学 特征(语言学) 编码(内存) 图形 编码 编码器 人工智能 数据挖掘 理论计算机科学 哲学 语言学 物理 生物化学 化学 天文 基因 操作系统
作者
Xiao Su,Xiaolan Wang,Haonan Li,Xin Xu,Yansong Wang
出处
期刊:Recent Patents on Mechanical Engineering [Bentham Science Publishers]
卷期号:17 (1): 36-44
标识
DOI:10.2174/0122127976268634230929182355
摘要

Background: Today, self-driving cars are already on the roads. However, driving safety remains a huge challenge. Trajectory prediction of traffic targets is one of the important tasks of an autonomous driving environment perception system, and its output trajectory can provide necessary information for decision control and path planning. Although there are many patents and articles related to trajectory prediction, the accuracy of trajectory prediction still needs to be improved. Objective: This paper aimed to propose a novel scheme that considers multi-feature independent encoding trajectory prediction (MFIE). Methods: MFIE is an independently coded trajectory prediction algorithm that consists of a spacetime interaction module and trajectory prediction module, and considers speed characteristics and road characteristics. In the spatiotemporal interaction module, an undirected and weightless static traffic graph is used to represent the interaction between vehicles, and multiple graph convolution blocks are used to perform data mining on the historical information of target vehicles, capture temporal features, and process spatial interaction features. In the trajectory prediction module, three long short-term memory (LSTM) encoders are used to encode the trajectory feature, motion feature, and road constraint feature independently. The three hidden features are spliced into a tensor, and the LSTM decoder is used to predict the future trajectory. Results: On datasets, such as Apollo and NGSIM, the proposed method has shown lower prediction error than traditional model-driven and data-driven methods, and predicted more target vehicles at the same time. It can provide a basis for vehicle path planning on highways and urban roads, and it is of great significance to the safety of autonomous driving. Conclusion: This paper has proposed a multi-feature independent encoders’ trajectory prediction data-driven algorithm, and the effectiveness of the algorithm is verified with a public dataset. The trajectory prediction algorithm considering multi-feature independent encoders provides some reference value for decision planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊哈啊哈额完成签到,获得积分10
2秒前
wss完成签到 ,获得积分10
3秒前
南宫清涟完成签到,获得积分10
3秒前
大麦古完成签到,获得积分10
4秒前
4秒前
7秒前
mammer完成签到 ,获得积分10
18秒前
大雁完成签到 ,获得积分0
20秒前
不可靠月亮完成签到,获得积分10
22秒前
maclogos完成签到,获得积分10
26秒前
YifanWang应助maclogos采纳,获得10
30秒前
云间山很困完成签到,获得积分10
33秒前
wlscj完成签到,获得积分0
34秒前
在努力完成签到 ,获得积分10
34秒前
MADAO完成签到 ,获得积分10
36秒前
左鞅完成签到 ,获得积分10
39秒前
40秒前
1525589136完成签到 ,获得积分10
41秒前
可靠月亮完成签到,获得积分10
42秒前
hongyi66完成签到 ,获得积分10
42秒前
43秒前
kitsch完成签到 ,获得积分10
43秒前
Maestro_S应助科研通管家采纳,获得10
47秒前
浮游应助科研通管家采纳,获得10
47秒前
Maestro_S应助科研通管家采纳,获得10
47秒前
科研通AI6应助科研通管家采纳,获得10
47秒前
温暖的紫文完成签到,获得积分10
47秒前
48秒前
博博要毕业完成签到 ,获得积分10
48秒前
无花果应助Sunny采纳,获得10
48秒前
天涯完成签到,获得积分10
49秒前
bkagyin应助边边角角落落采纳,获得10
51秒前
77发布了新的文献求助10
53秒前
electricelectric完成签到,获得积分10
55秒前
alex12259完成签到 ,获得积分10
55秒前
57秒前
rockyshi完成签到 ,获得积分10
58秒前
Sunny发布了新的文献求助10
1分钟前
望北完成签到 ,获得积分10
1分钟前
五月完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293803
求助须知:如何正确求助?哪些是违规求助? 4443897
关于积分的说明 13831682
捐赠科研通 4327774
什么是DOI,文献DOI怎么找? 2375729
邀请新用户注册赠送积分活动 1371005
关于科研通互助平台的介绍 1336012