清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Vehicle Trajectory Prediction Considering Multi-feature Independent Encoding Based on Graph Neural Network

弹道 计算机科学 特征(语言学) 编码(内存) 图形 编码 编码器 人工智能 数据挖掘 理论计算机科学 语言学 生物化学 基因 操作系统 物理 哲学 化学 天文
作者
Xiao Su,Xiaolan Wang,Haonan Li,Xin Xu,Yansong Wang
出处
期刊:Recent Patents on Mechanical Engineering [Bentham Science Publishers]
卷期号:17 (1): 36-44
标识
DOI:10.2174/0122127976268634230929182355
摘要

Background: Today, self-driving cars are already on the roads. However, driving safety remains a huge challenge. Trajectory prediction of traffic targets is one of the important tasks of an autonomous driving environment perception system, and its output trajectory can provide necessary information for decision control and path planning. Although there are many patents and articles related to trajectory prediction, the accuracy of trajectory prediction still needs to be improved. Objective: This paper aimed to propose a novel scheme that considers multi-feature independent encoding trajectory prediction (MFIE). Methods: MFIE is an independently coded trajectory prediction algorithm that consists of a spacetime interaction module and trajectory prediction module, and considers speed characteristics and road characteristics. In the spatiotemporal interaction module, an undirected and weightless static traffic graph is used to represent the interaction between vehicles, and multiple graph convolution blocks are used to perform data mining on the historical information of target vehicles, capture temporal features, and process spatial interaction features. In the trajectory prediction module, three long short-term memory (LSTM) encoders are used to encode the trajectory feature, motion feature, and road constraint feature independently. The three hidden features are spliced into a tensor, and the LSTM decoder is used to predict the future trajectory. Results: On datasets, such as Apollo and NGSIM, the proposed method has shown lower prediction error than traditional model-driven and data-driven methods, and predicted more target vehicles at the same time. It can provide a basis for vehicle path planning on highways and urban roads, and it is of great significance to the safety of autonomous driving. Conclusion: This paper has proposed a multi-feature independent encoders’ trajectory prediction data-driven algorithm, and the effectiveness of the algorithm is verified with a public dataset. The trajectory prediction algorithm considering multi-feature independent encoders provides some reference value for decision planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
13秒前
36秒前
今后应助科研通管家采纳,获得10
36秒前
40秒前
40秒前
无心的尔阳完成签到 ,获得积分20
44秒前
47秒前
58秒前
poki完成签到 ,获得积分10
1分钟前
英俊的铭应助典雅的荣轩采纳,获得10
1分钟前
知行者完成签到 ,获得积分10
1分钟前
小鱼女侠完成签到 ,获得积分10
1分钟前
房天川完成签到 ,获得积分10
1分钟前
水天一色发布了新的文献求助10
1分钟前
jerry完成签到 ,获得积分10
1分钟前
啾一口香菜完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
胡可完成签到 ,获得积分10
2分钟前
沙海沉戈完成签到,获得积分0
2分钟前
无悔完成签到 ,获得积分10
2分钟前
2分钟前
负责以山完成签到 ,获得积分10
2分钟前
zzzzz发布了新的文献求助10
2分钟前
烟雨江南完成签到,获得积分10
2分钟前
wyh295352318完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
zzzzz完成签到,获得积分10
3分钟前
3分钟前
3分钟前
刘刘完成签到 ,获得积分10
4分钟前
hyxu678完成签到,获得积分10
4分钟前
雷小牛完成签到 ,获得积分10
4分钟前
小蝴蝶完成签到,获得积分20
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
小蝴蝶发布了新的文献求助10
5分钟前
Binggo完成签到,获得积分10
5分钟前
5分钟前
5分钟前
搞怪莫茗发布了新的文献求助10
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015363
求助须知:如何正确求助?哪些是违规求助? 3555313
关于积分的说明 11317959
捐赠科研通 3288629
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 811983