Vehicle Trajectory Prediction Considering Multi-feature Independent Encoding Based on Graph Neural Network

弹道 计算机科学 特征(语言学) 编码(内存) 图形 编码 编码器 人工智能 数据挖掘 理论计算机科学 哲学 语言学 物理 生物化学 化学 天文 基因 操作系统
作者
Xiao Su,Xiaolan Wang,Haonan Li,Xin Xu,Yansong Wang
出处
期刊:Recent Patents on Mechanical Engineering 卷期号:17 (1): 36-44
标识
DOI:10.2174/0122127976268634230929182355
摘要

Background: Today, self-driving cars are already on the roads. However, driving safety remains a huge challenge. Trajectory prediction of traffic targets is one of the important tasks of an autonomous driving environment perception system, and its output trajectory can provide necessary information for decision control and path planning. Although there are many patents and articles related to trajectory prediction, the accuracy of trajectory prediction still needs to be improved. Objective: This paper aimed to propose a novel scheme that considers multi-feature independent encoding trajectory prediction (MFIE). Methods: MFIE is an independently coded trajectory prediction algorithm that consists of a spacetime interaction module and trajectory prediction module, and considers speed characteristics and road characteristics. In the spatiotemporal interaction module, an undirected and weightless static traffic graph is used to represent the interaction between vehicles, and multiple graph convolution blocks are used to perform data mining on the historical information of target vehicles, capture temporal features, and process spatial interaction features. In the trajectory prediction module, three long short-term memory (LSTM) encoders are used to encode the trajectory feature, motion feature, and road constraint feature independently. The three hidden features are spliced into a tensor, and the LSTM decoder is used to predict the future trajectory. Results: On datasets, such as Apollo and NGSIM, the proposed method has shown lower prediction error than traditional model-driven and data-driven methods, and predicted more target vehicles at the same time. It can provide a basis for vehicle path planning on highways and urban roads, and it is of great significance to the safety of autonomous driving. Conclusion: This paper has proposed a multi-feature independent encoders’ trajectory prediction data-driven algorithm, and the effectiveness of the algorithm is verified with a public dataset. The trajectory prediction algorithm considering multi-feature independent encoders provides some reference value for decision planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助GD采纳,获得10
刚刚
FashionBoy应助小五采纳,获得10
1秒前
2秒前
2秒前
3秒前
xjcy应助周凡淇采纳,获得10
3秒前
zyfqpc应助周凡淇采纳,获得10
3秒前
华仔应助蓝血之人采纳,获得10
4秒前
5秒前
5秒前
体贴的立果完成签到 ,获得积分10
5秒前
马路发布了新的文献求助10
6秒前
田様应助自觉枫采纳,获得10
8秒前
酸奶七发布了新的文献求助10
8秒前
9秒前
无花果应助大方的云朵采纳,获得10
11秒前
爱吃荔枝完成签到,获得积分20
12秒前
lwxuan完成签到,获得积分10
12秒前
13秒前
14秒前
16秒前
16秒前
wxyes完成签到,获得积分20
17秒前
打打应助初闻采纳,获得10
19秒前
19秒前
20秒前
aoao发布了新的文献求助10
21秒前
shelly发布了新的文献求助10
22秒前
22秒前
乐乐应助芒果采纳,获得10
23秒前
23秒前
24秒前
Akim应助马路采纳,获得20
25秒前
天马行空发布了新的文献求助10
25秒前
充电宝应助研友_Z63Wg8采纳,获得10
26秒前
wxyes发布了新的文献求助20
28秒前
28秒前
Zll完成签到,获得积分10
29秒前
有魅力听枫完成签到,获得积分10
29秒前
BJJ完成签到,获得积分10
29秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138196
求助须知:如何正确求助?哪些是违规求助? 2789101
关于积分的说明 7790287
捐赠科研通 2445509
什么是DOI,文献DOI怎么找? 1300476
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046