Vehicle Trajectory Prediction Considering Multi-feature Independent Encoding Based on Graph Neural Network

弹道 计算机科学 特征(语言学) 编码(内存) 图形 编码 编码器 人工智能 数据挖掘 理论计算机科学 语言学 生物化学 基因 操作系统 物理 哲学 化学 天文
作者
Xiao Su,Xiaolan Wang,Haonan Li,Xin Xu,Yansong Wang
出处
期刊:Recent Patents on Mechanical Engineering [Bentham Science Publishers]
卷期号:17 (1): 36-44
标识
DOI:10.2174/0122127976268634230929182355
摘要

Background: Today, self-driving cars are already on the roads. However, driving safety remains a huge challenge. Trajectory prediction of traffic targets is one of the important tasks of an autonomous driving environment perception system, and its output trajectory can provide necessary information for decision control and path planning. Although there are many patents and articles related to trajectory prediction, the accuracy of trajectory prediction still needs to be improved. Objective: This paper aimed to propose a novel scheme that considers multi-feature independent encoding trajectory prediction (MFIE). Methods: MFIE is an independently coded trajectory prediction algorithm that consists of a spacetime interaction module and trajectory prediction module, and considers speed characteristics and road characteristics. In the spatiotemporal interaction module, an undirected and weightless static traffic graph is used to represent the interaction between vehicles, and multiple graph convolution blocks are used to perform data mining on the historical information of target vehicles, capture temporal features, and process spatial interaction features. In the trajectory prediction module, three long short-term memory (LSTM) encoders are used to encode the trajectory feature, motion feature, and road constraint feature independently. The three hidden features are spliced into a tensor, and the LSTM decoder is used to predict the future trajectory. Results: On datasets, such as Apollo and NGSIM, the proposed method has shown lower prediction error than traditional model-driven and data-driven methods, and predicted more target vehicles at the same time. It can provide a basis for vehicle path planning on highways and urban roads, and it is of great significance to the safety of autonomous driving. Conclusion: This paper has proposed a multi-feature independent encoders’ trajectory prediction data-driven algorithm, and the effectiveness of the algorithm is verified with a public dataset. The trajectory prediction algorithm considering multi-feature independent encoders provides some reference value for decision planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李燕伟完成签到 ,获得积分10
刚刚
方圆完成签到 ,获得积分10
1秒前
2秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
16秒前
专一的白开水完成签到 ,获得积分10
23秒前
游艺完成签到 ,获得积分10
24秒前
lysenko完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
26秒前
研友_CCQ_M完成签到,获得积分10
29秒前
陈doctor完成签到 ,获得积分10
29秒前
ycc完成签到,获得积分10
31秒前
Alger完成签到,获得积分10
37秒前
袁璐完成签到 ,获得积分10
38秒前
40秒前
43秒前
量子星尘发布了新的文献求助10
43秒前
小井盖完成签到 ,获得积分10
43秒前
Bismarck发布了新的文献求助10
44秒前
温柔的柠檬完成签到 ,获得积分10
48秒前
范冰冰发布了新的文献求助10
50秒前
Moonchild完成签到 ,获得积分10
50秒前
Pursue完成签到 ,获得积分10
52秒前
慕青应助科研通管家采纳,获得10
54秒前
54秒前
Bismarck完成签到,获得积分20
56秒前
量子星尘发布了新的文献求助10
57秒前
李爱国应助AliEmbark采纳,获得10
58秒前
天真冷安完成签到,获得积分10
1分钟前
庚朝年完成签到 ,获得积分10
1分钟前
一见憘完成签到 ,获得积分10
1分钟前
啊熙完成签到 ,获得积分10
1分钟前
大模型应助Bismarck采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
周明明完成签到 ,获得积分10
1分钟前
直率的以寒完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952372
求助须知:如何正确求助?哪些是违规求助? 4215111
关于积分的说明 13111336
捐赠科研通 3997075
什么是DOI,文献DOI怎么找? 2187723
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115740