已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Protein-DNA interface hotspots prediction based on fusion features of embeddings of protein language model and handcrafted features

随机森林 计算机科学 可解释性 支持向量机 热点(地质) 人工智能 数据挖掘 机器学习 模式识别(心理学) 地球物理学 地质学
作者
Xiang Li,Gang-Ao Wang,Zhuoyu Wei,Hong Wang,Xiaolei Zhu
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:107: 107970-107970
标识
DOI:10.1016/j.compbiolchem.2023.107970
摘要

The identification of hotspot residues at the protein-DNA binding interfaces plays a crucial role in various aspects such as drug discovery and disease treatment. Although experimental methods such as alanine scanning mutagenesis have been developed to determine the hotspot residues on protein-DNA interfaces, they are both inefficient and costly. Therefore, it is highly necessary to develop efficient and accurate computational methods for predicting hotspot residues. Several computational methods have been developed, however, they are mainly based on hand-crafted features which may not be able to represent all the information of proteins. In this regard, we propose a model called PDH-EH, which utilizes fused features of embeddings extracted from a protein language model (PLM) and handcrafted features. After we extracted the total 1141 dimensional features, we used mRMR to select the optimal feature subset. Based on the optimal feature subset, several different learning algorithms such as Random Forest, Support Vector Machine, and XGBoost were used to build the models. The cross-validation results on the training dataset show that the model built by using Random Forest achieves the highest AUROC. Further evaluation on the independent test set shows that our model outperforms the existing state-of-the-art models. Moreover, the effectiveness and interpretability of embeddings extracted from PLM were demonstrated in our analysis. The codes and datasets used in this study are available at: https://github.com/lixiangli01/PDH-EH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
慢慢的地理人完成签到,获得积分10
3秒前
Fighting完成签到,获得积分10
5秒前
听风发布了新的文献求助10
6秒前
qiwenlau完成签到,获得积分10
6秒前
vsvsgo发布了新的文献求助10
6秒前
6秒前
zhang完成签到 ,获得积分10
9秒前
机灵的啤酒完成签到 ,获得积分10
10秒前
qiwenlau发布了新的文献求助10
11秒前
刘个毛完成签到 ,获得积分10
12秒前
vsvsgo完成签到,获得积分20
13秒前
剑指东方是为谁完成签到,获得积分10
15秒前
Joyce完成签到,获得积分10
16秒前
万事屋完成签到 ,获得积分10
17秒前
21秒前
23秒前
楠茸完成签到 ,获得积分10
25秒前
26秒前
fanlee发布了新的文献求助10
26秒前
meow完成签到 ,获得积分10
26秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
华仔应助科研通管家采纳,获得10
29秒前
29秒前
shhoing应助科研通管家采纳,获得20
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
nana完成签到,获得积分10
30秒前
123完成签到 ,获得积分10
30秒前
瞬间完成签到 ,获得积分10
32秒前
33秒前
乌拉拉啦啦啦完成签到 ,获得积分10
36秒前
888发布了新的文献求助10
36秒前
Bizibili完成签到,获得积分10
36秒前
菠萝吹雪应助小杰杰采纳,获得30
37秒前
CRYLK完成签到 ,获得积分10
38秒前
Leo完成签到 ,获得积分10
41秒前
42秒前
我爱科研完成签到,获得积分10
44秒前
英姑应助撸撸大仙采纳,获得10
44秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455575
求助须知:如何正确求助?哪些是违规求助? 3050813
关于积分的说明 9022756
捐赠科研通 2739374
什么是DOI,文献DOI怎么找? 1502673
科研通“疑难数据库(出版商)”最低求助积分说明 694583
邀请新用户注册赠送积分活动 693387