Protein-DNA interface hotspots prediction based on fusion features of embeddings of protein language model and handcrafted features

随机森林 计算机科学 可解释性 支持向量机 热点(地质) 人工智能 数据挖掘 机器学习 模式识别(心理学) 地球物理学 地质学
作者
Xiang Li,Gang-Ao Wang,Zhuoyu Wei,Hong Wang,Xiaolei Zhu
出处
期刊:Computational Biology and Chemistry [Elsevier BV]
卷期号:107: 107970-107970
标识
DOI:10.1016/j.compbiolchem.2023.107970
摘要

The identification of hotspot residues at the protein-DNA binding interfaces plays a crucial role in various aspects such as drug discovery and disease treatment. Although experimental methods such as alanine scanning mutagenesis have been developed to determine the hotspot residues on protein-DNA interfaces, they are both inefficient and costly. Therefore, it is highly necessary to develop efficient and accurate computational methods for predicting hotspot residues. Several computational methods have been developed, however, they are mainly based on hand-crafted features which may not be able to represent all the information of proteins. In this regard, we propose a model called PDH-EH, which utilizes fused features of embeddings extracted from a protein language model (PLM) and handcrafted features. After we extracted the total 1141 dimensional features, we used mRMR to select the optimal feature subset. Based on the optimal feature subset, several different learning algorithms such as Random Forest, Support Vector Machine, and XGBoost were used to build the models. The cross-validation results on the training dataset show that the model built by using Random Forest achieves the highest AUROC. Further evaluation on the independent test set shows that our model outperforms the existing state-of-the-art models. Moreover, the effectiveness and interpretability of embeddings extracted from PLM were demonstrated in our analysis. The codes and datasets used in this study are available at: https://github.com/lixiangli01/PDH-EH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fs完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
gnr2000发布了新的文献求助10
3秒前
evens发布了新的文献求助10
3秒前
米九完成签到,获得积分10
4秒前
紧张的铅笔完成签到,获得积分10
4秒前
老刘完成签到,获得积分10
4秒前
岚婘完成签到,获得积分10
4秒前
frap完成签到,获得积分0
6秒前
Rui完成签到 ,获得积分10
7秒前
852应助球球了采纳,获得10
8秒前
优雅小霜发布了新的文献求助10
8秒前
星沉静默完成签到 ,获得积分10
8秒前
搜集达人应助yxy采纳,获得10
9秒前
流川枫发布了新的文献求助10
10秒前
russing完成签到 ,获得积分10
10秒前
张础锐完成签到,获得积分10
11秒前
沉静海安完成签到,获得积分10
11秒前
苗条的小蜜蜂完成签到 ,获得积分10
12秒前
万能图书馆应助westbobo采纳,获得10
12秒前
li完成签到,获得积分20
13秒前
lin完成签到,获得积分10
14秒前
Lucas应助XJ采纳,获得10
14秒前
今天不学习明天变垃圾完成签到,获得积分10
14秒前
心灵美的修洁完成签到 ,获得积分10
14秒前
爱听歌的从筠完成签到,获得积分10
15秒前
17秒前
1997_Aris发布了新的文献求助10
17秒前
cc完成签到,获得积分10
18秒前
li发布了新的文献求助10
18秒前
打打应助月倚樱落时采纳,获得10
19秒前
踏雪寻梅完成签到,获得积分10
19秒前
王不王发布了新的文献求助10
19秒前
370完成签到,获得积分10
19秒前
研友_VZG7GZ应助decademe采纳,获得10
20秒前
liuxinying完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
111完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582