Protein-DNA interface hotspots prediction based on fusion features of embeddings of protein language model and handcrafted features

随机森林 计算机科学 可解释性 支持向量机 热点(地质) 人工智能 数据挖掘 机器学习 模式识别(心理学) 地球物理学 地质学
作者
Xiang Li,Gang-Ao Wang,Zhuoyu Wei,Hong Wang,Xiaolei Zhu
出处
期刊:Computational Biology and Chemistry [Elsevier BV]
卷期号:107: 107970-107970
标识
DOI:10.1016/j.compbiolchem.2023.107970
摘要

The identification of hotspot residues at the protein-DNA binding interfaces plays a crucial role in various aspects such as drug discovery and disease treatment. Although experimental methods such as alanine scanning mutagenesis have been developed to determine the hotspot residues on protein-DNA interfaces, they are both inefficient and costly. Therefore, it is highly necessary to develop efficient and accurate computational methods for predicting hotspot residues. Several computational methods have been developed, however, they are mainly based on hand-crafted features which may not be able to represent all the information of proteins. In this regard, we propose a model called PDH-EH, which utilizes fused features of embeddings extracted from a protein language model (PLM) and handcrafted features. After we extracted the total 1141 dimensional features, we used mRMR to select the optimal feature subset. Based on the optimal feature subset, several different learning algorithms such as Random Forest, Support Vector Machine, and XGBoost were used to build the models. The cross-validation results on the training dataset show that the model built by using Random Forest achieves the highest AUROC. Further evaluation on the independent test set shows that our model outperforms the existing state-of-the-art models. Moreover, the effectiveness and interpretability of embeddings extracted from PLM were demonstrated in our analysis. The codes and datasets used in this study are available at: https://github.com/lixiangli01/PDH-EH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助科研通管家采纳,获得10
刚刚
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
1秒前
阿伟完成签到,获得积分10
1秒前
丘比特应助平淡的文龙采纳,获得10
1秒前
poppy发布了新的文献求助10
1秒前
ding应助科研通管家采纳,获得10
1秒前
天天快乐应助坚强的寒风采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
2秒前
繁荣的秋发布了新的文献求助10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI6应助hottest采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
Leonzong发布了新的文献求助10
2秒前
852应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
2秒前
可爱的函函应助666采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
所所应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
林子发布了新的文献求助10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
5秒前
独特的绯完成签到,获得积分10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261651
求助须知:如何正确求助?哪些是违规求助? 4422731
关于积分的说明 13767337
捐赠科研通 4297220
什么是DOI,文献DOI怎么找? 2357773
邀请新用户注册赠送积分活动 1354169
关于科研通互助平台的介绍 1315315