Tunable 1D van der Waals Nanostructures by Vapor–Liquid–Solid Growth

纳米线 范德瓦尔斯力 材料科学 成核 纳米技术 纳米结构 硫族元素 汽-液-固法 半导体 石墨烯 化学物理 结晶学 化学 光电子学 分子 有机化学
作者
Peter Sutter,Eli Sutter
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (22): 3235-3245 被引量:4
标识
DOI:10.1021/acs.accounts.3c00502
摘要

ConspectusVapor–liquid–solid (VLS) growth using molten metal catalysts has traditionally been used to synthesize nanowires from different 3D-crystalline semiconductors. With their anisotropic structure and properties, 2D/layered semiconductors create additional opportunities for materials design when shaped into 1D nanostructures. In contrast to hexagonal 2D crystals such as graphene, h-BN, and transition metal dichalcogenides, which tend to roll up into nanotubes, VLS growth of layered group III and group IV monochalcogenides produces diverse nanowire and nanoribbon morphologies that crystallize in a bulk-like layered structure with nanometer-scale footprint and lengths exceeding tens of micrometers. In this Account, we discuss the achievable morphologies, the mechanisms governing key structural features, and the emerging functional properties of these 1D van der Waals (vdW) architectures. Recent results highlight rich sets of phenomena that qualify these materials as a distinct class of nanostructures, far beyond a mere extension of 3D-crystalline VLS nanowires to vdW crystals.The main difference between 3D- and vdW crystals, the pronounced in-plane/cross-plane anisotropy of layered materials, motivates investigating the factors governing the layer orientation. Recent research suggests that the VLS catalyst plays a key role, and that its modification via the choice of chalcogens or through modifiers added to the growth precursor can switch both the nanostructure morphology and vdW layering. In many instances, ordinary layered structures are not formed but VLS growth is dominated by morphologies─often containing a crystal defect─that present reduced or vanishing layer nucleation barriers, thus achieving fast growth and emerging as the principal synthesis product. Prominent defect morphologies include vdW bicrystals growing by a twin-plane reentrant process and chiral nanowires formed by spiral growth around an axial screw dislocation. The latter carry particular promise, e.g., for twistronics. In vdW nanowires, Eshelby twist─a progressive crystal rotation caused by the dislocation stress field─translates into interlayer twist that is precisely tunable via the wire diameter. Projected onto a helicoid vdW interface, the resulting twist moirés not only modify the electronic structure but also realize configurations without equivalent in planar systems, such as continuously variable twist and twist homojunctions.1D vdW nanostructures derive distinct functionality from both their layered structure and embedded defects. Correlated electron microscopy methods including imaging, nanobeam diffraction, as well as electron-stimulated local absorption and luminescence spectroscopies combine to an exceptionally powerful probe of this emerging functionality, identifying twist-moiré induced electronic modulations and chiral photonic modes, demonstrating the benign nature of defects in optoelectronics, and uncovering ferroelectricity via symmetry-breaking by single-layer stacking faults in vdW nanowires. Far-reaching possibilities for tuning crystal structure, morphology, and defects create a rich playground for the discovery of new functional nanomaterials based on vdW crystals. Given the prominence of defects and extensive prospects for controlling their character and placement during synthesis, 1D vdW nanostructures have the potential to cause a paradigm shift in the science of electronic materials, replacing the traditional strategy of suppressing crystal imperfections with an alternative philosophy that embraces the use of individual defects with designed properties as drivers of technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
西柚完成签到,获得积分10
刚刚
刚刚
不会下文献啊完成签到,获得积分10
1秒前
悦耳静枫完成签到,获得积分10
1秒前
拼搏的宇完成签到,获得积分10
1秒前
1秒前
司空博涛完成签到,获得积分10
2秒前
xiaoze发布了新的文献求助10
2秒前
lwy发布了新的文献求助30
2秒前
Wait完成签到,获得积分20
3秒前
鲜艳的熊猫完成签到,获得积分10
4秒前
XBL发布了新的文献求助10
4秒前
4秒前
星辰大海应助十分十二寸采纳,获得10
5秒前
5秒前
6秒前
小杰瑞发布了新的文献求助10
7秒前
Chemokin完成签到 ,获得积分10
8秒前
121212发布了新的文献求助10
9秒前
lpc发布了新的文献求助10
10秒前
huohuo完成签到,获得积分10
11秒前
xiubo128完成签到,获得积分10
11秒前
自然寒烟发布了新的文献求助10
11秒前
安澜应助lixinlong采纳,获得10
12秒前
Sekiro发布了新的文献求助10
12秒前
加菲丰丰应助日笙采纳,获得20
13秒前
勤劳的老九完成签到 ,获得积分10
14秒前
15秒前
无花果应助宇文山柏采纳,获得10
15秒前
15秒前
约翰完成签到,获得积分10
15秒前
16秒前
ldm发布了新的文献求助10
16秒前
赘婿应助舒服的美女采纳,获得10
17秒前
调研昵称发布了新的文献求助10
18秒前
skyinner发布了新的文献求助10
19秒前
19秒前
万能图书馆应助小核桃采纳,获得10
20秒前
能干哈哈发布了新的文献求助20
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149647
求助须知:如何正确求助?哪些是违规求助? 2800710
关于积分的说明 7841396
捐赠科研通 2458270
什么是DOI,文献DOI怎么找? 1308367
科研通“疑难数据库(出版商)”最低求助积分说明 628498
版权声明 601706