Tunable 1D van der Waals Nanostructures by Vapor–Liquid–Solid Growth

纳米线 范德瓦尔斯力 材料科学 成核 纳米技术 纳米结构 硫族元素 汽-液-固法 半导体 石墨烯 化学物理 结晶学 化学 光电子学 分子 有机化学
作者
Peter Sutter,Eli Sutter
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (22): 3235-3245 被引量:4
标识
DOI:10.1021/acs.accounts.3c00502
摘要

ConspectusVapor–liquid–solid (VLS) growth using molten metal catalysts has traditionally been used to synthesize nanowires from different 3D-crystalline semiconductors. With their anisotropic structure and properties, 2D/layered semiconductors create additional opportunities for materials design when shaped into 1D nanostructures. In contrast to hexagonal 2D crystals such as graphene, h-BN, and transition metal dichalcogenides, which tend to roll up into nanotubes, VLS growth of layered group III and group IV monochalcogenides produces diverse nanowire and nanoribbon morphologies that crystallize in a bulk-like layered structure with nanometer-scale footprint and lengths exceeding tens of micrometers. In this Account, we discuss the achievable morphologies, the mechanisms governing key structural features, and the emerging functional properties of these 1D van der Waals (vdW) architectures. Recent results highlight rich sets of phenomena that qualify these materials as a distinct class of nanostructures, far beyond a mere extension of 3D-crystalline VLS nanowires to vdW crystals.The main difference between 3D- and vdW crystals, the pronounced in-plane/cross-plane anisotropy of layered materials, motivates investigating the factors governing the layer orientation. Recent research suggests that the VLS catalyst plays a key role, and that its modification via the choice of chalcogens or through modifiers added to the growth precursor can switch both the nanostructure morphology and vdW layering. In many instances, ordinary layered structures are not formed but VLS growth is dominated by morphologies─often containing a crystal defect─that present reduced or vanishing layer nucleation barriers, thus achieving fast growth and emerging as the principal synthesis product. Prominent defect morphologies include vdW bicrystals growing by a twin-plane reentrant process and chiral nanowires formed by spiral growth around an axial screw dislocation. The latter carry particular promise, e.g., for twistronics. In vdW nanowires, Eshelby twist─a progressive crystal rotation caused by the dislocation stress field─translates into interlayer twist that is precisely tunable via the wire diameter. Projected onto a helicoid vdW interface, the resulting twist moirés not only modify the electronic structure but also realize configurations without equivalent in planar systems, such as continuously variable twist and twist homojunctions.1D vdW nanostructures derive distinct functionality from both their layered structure and embedded defects. Correlated electron microscopy methods including imaging, nanobeam diffraction, as well as electron-stimulated local absorption and luminescence spectroscopies combine to an exceptionally powerful probe of this emerging functionality, identifying twist-moiré induced electronic modulations and chiral photonic modes, demonstrating the benign nature of defects in optoelectronics, and uncovering ferroelectricity via symmetry-breaking by single-layer stacking faults in vdW nanowires. Far-reaching possibilities for tuning crystal structure, morphology, and defects create a rich playground for the discovery of new functional nanomaterials based on vdW crystals. Given the prominence of defects and extensive prospects for controlling their character and placement during synthesis, 1D vdW nanostructures have the potential to cause a paradigm shift in the science of electronic materials, replacing the traditional strategy of suppressing crystal imperfections with an alternative philosophy that embraces the use of individual defects with designed properties as drivers of technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shiyu02完成签到,获得积分10
刚刚
1秒前
科研小白发布了新的文献求助10
4秒前
5秒前
7秒前
阔达蓝血完成签到,获得积分10
9秒前
CipherSage应助超级的板栗采纳,获得10
9秒前
刘shuchang发布了新的文献求助10
9秒前
小王发布了新的文献求助10
11秒前
你看起来很好吃完成签到,获得积分10
11秒前
sifan发布了新的文献求助10
12秒前
刻苦秋烟完成签到,获得积分20
13秒前
美味肉蟹煲完成签到,获得积分10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得100
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
陈末应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
16秒前
愉快天亦完成签到,获得积分10
17秒前
彭于晏应助椰子采纳,获得10
19秒前
壮观复天完成签到 ,获得积分10
20秒前
HH完成签到,获得积分20
21秒前
冰河发布了新的文献求助10
21秒前
乐意李发布了新的文献求助30
23秒前
XIA完成签到 ,获得积分10
24秒前
可爱的函函应助顺利的愫采纳,获得10
24秒前
lllable关注了科研通微信公众号
25秒前
善学以致用应助刻苦秋烟采纳,获得10
26秒前
zyc1998完成签到,获得积分10
26秒前
27秒前
27秒前
量子星尘发布了新的文献求助10
28秒前
美好斓发布了新的文献求助10
29秒前
Doctor.TANG完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416958
求助须知:如何正确求助?哪些是违规求助? 4533026
关于积分的说明 14137984
捐赠科研通 4449106
什么是DOI,文献DOI怎么找? 2440575
邀请新用户注册赠送积分活动 1432430
关于科研通互助平台的介绍 1409858