Tunable 1D van der Waals Nanostructures by Vapor–Liquid–Solid Growth

纳米线 范德瓦尔斯力 材料科学 成核 纳米技术 纳米结构 硫族元素 汽-液-固法 半导体 石墨烯 化学物理 结晶学 化学 光电子学 分子 有机化学
作者
Peter Sutter,Eli Sutter
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (22): 3235-3245 被引量:4
标识
DOI:10.1021/acs.accounts.3c00502
摘要

ConspectusVapor–liquid–solid (VLS) growth using molten metal catalysts has traditionally been used to synthesize nanowires from different 3D-crystalline semiconductors. With their anisotropic structure and properties, 2D/layered semiconductors create additional opportunities for materials design when shaped into 1D nanostructures. In contrast to hexagonal 2D crystals such as graphene, h-BN, and transition metal dichalcogenides, which tend to roll up into nanotubes, VLS growth of layered group III and group IV monochalcogenides produces diverse nanowire and nanoribbon morphologies that crystallize in a bulk-like layered structure with nanometer-scale footprint and lengths exceeding tens of micrometers. In this Account, we discuss the achievable morphologies, the mechanisms governing key structural features, and the emerging functional properties of these 1D van der Waals (vdW) architectures. Recent results highlight rich sets of phenomena that qualify these materials as a distinct class of nanostructures, far beyond a mere extension of 3D-crystalline VLS nanowires to vdW crystals.The main difference between 3D- and vdW crystals, the pronounced in-plane/cross-plane anisotropy of layered materials, motivates investigating the factors governing the layer orientation. Recent research suggests that the VLS catalyst plays a key role, and that its modification via the choice of chalcogens or through modifiers added to the growth precursor can switch both the nanostructure morphology and vdW layering. In many instances, ordinary layered structures are not formed but VLS growth is dominated by morphologies─often containing a crystal defect─that present reduced or vanishing layer nucleation barriers, thus achieving fast growth and emerging as the principal synthesis product. Prominent defect morphologies include vdW bicrystals growing by a twin-plane reentrant process and chiral nanowires formed by spiral growth around an axial screw dislocation. The latter carry particular promise, e.g., for twistronics. In vdW nanowires, Eshelby twist─a progressive crystal rotation caused by the dislocation stress field─translates into interlayer twist that is precisely tunable via the wire diameter. Projected onto a helicoid vdW interface, the resulting twist moirés not only modify the electronic structure but also realize configurations without equivalent in planar systems, such as continuously variable twist and twist homojunctions.1D vdW nanostructures derive distinct functionality from both their layered structure and embedded defects. Correlated electron microscopy methods including imaging, nanobeam diffraction, as well as electron-stimulated local absorption and luminescence spectroscopies combine to an exceptionally powerful probe of this emerging functionality, identifying twist-moiré induced electronic modulations and chiral photonic modes, demonstrating the benign nature of defects in optoelectronics, and uncovering ferroelectricity via symmetry-breaking by single-layer stacking faults in vdW nanowires. Far-reaching possibilities for tuning crystal structure, morphology, and defects create a rich playground for the discovery of new functional nanomaterials based on vdW crystals. Given the prominence of defects and extensive prospects for controlling their character and placement during synthesis, 1D vdW nanostructures have the potential to cause a paradigm shift in the science of electronic materials, replacing the traditional strategy of suppressing crystal imperfections with an alternative philosophy that embraces the use of individual defects with designed properties as drivers of technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彬彬完成签到,获得积分10
1秒前
blank发布了新的文献求助10
2秒前
2秒前
3秒前
沈彬彬发布了新的文献求助10
4秒前
Rondab应助松松采纳,获得10
4秒前
akihi关注了科研通微信公众号
4秒前
18幺八发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
luhan完成签到,获得积分10
5秒前
5秒前
虎虎虎完成签到,获得积分10
6秒前
搜集达人应助幼汁汁鬼鬼采纳,获得10
6秒前
英姑应助康康采纳,获得10
7秒前
深水鱼完成签到,获得积分10
7秒前
YY完成签到 ,获得积分10
8秒前
黄黄发布了新的文献求助10
9秒前
excellent发布了新的文献求助10
9秒前
充电宝应助leez采纳,获得10
10秒前
assd发布了新的文献求助10
10秒前
963完成签到,获得积分10
10秒前
Wrasul完成签到 ,获得积分10
10秒前
11秒前
Lucas应助猫丫采纳,获得10
12秒前
隐形曼青应助温柔以冬采纳,获得10
12秒前
研友_VZG7GZ应助白日梦采纳,获得10
13秒前
氧化石墨烯完成签到,获得积分10
13秒前
13秒前
Sunnie完成签到,获得积分10
13秒前
blank完成签到,获得积分20
15秒前
15秒前
ohh发布了新的文献求助10
15秒前
bjyx完成签到,获得积分10
16秒前
852应助沈彬彬采纳,获得10
16秒前
隐形曼青应助w_x_x采纳,获得10
17秒前
17秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Economic Geography and Public Policy 900
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988786
求助须知:如何正确求助?哪些是违规求助? 3531116
关于积分的说明 11252493
捐赠科研通 3269766
什么是DOI,文献DOI怎么找? 1804771
邀请新用户注册赠送积分活动 881870
科研通“疑难数据库(出版商)”最低求助积分说明 809021