Tunable 1D van der Waals Nanostructures by Vapor–Liquid–Solid Growth

纳米线 范德瓦尔斯力 材料科学 成核 纳米技术 纳米结构 硫族元素 汽-液-固法 半导体 石墨烯 化学物理 结晶学 化学 光电子学 分子 有机化学
作者
Peter Sutter,Eli Sutter
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (22): 3235-3245 被引量:4
标识
DOI:10.1021/acs.accounts.3c00502
摘要

ConspectusVapor–liquid–solid (VLS) growth using molten metal catalysts has traditionally been used to synthesize nanowires from different 3D-crystalline semiconductors. With their anisotropic structure and properties, 2D/layered semiconductors create additional opportunities for materials design when shaped into 1D nanostructures. In contrast to hexagonal 2D crystals such as graphene, h-BN, and transition metal dichalcogenides, which tend to roll up into nanotubes, VLS growth of layered group III and group IV monochalcogenides produces diverse nanowire and nanoribbon morphologies that crystallize in a bulk-like layered structure with nanometer-scale footprint and lengths exceeding tens of micrometers. In this Account, we discuss the achievable morphologies, the mechanisms governing key structural features, and the emerging functional properties of these 1D van der Waals (vdW) architectures. Recent results highlight rich sets of phenomena that qualify these materials as a distinct class of nanostructures, far beyond a mere extension of 3D-crystalline VLS nanowires to vdW crystals.The main difference between 3D- and vdW crystals, the pronounced in-plane/cross-plane anisotropy of layered materials, motivates investigating the factors governing the layer orientation. Recent research suggests that the VLS catalyst plays a key role, and that its modification via the choice of chalcogens or through modifiers added to the growth precursor can switch both the nanostructure morphology and vdW layering. In many instances, ordinary layered structures are not formed but VLS growth is dominated by morphologies─often containing a crystal defect─that present reduced or vanishing layer nucleation barriers, thus achieving fast growth and emerging as the principal synthesis product. Prominent defect morphologies include vdW bicrystals growing by a twin-plane reentrant process and chiral nanowires formed by spiral growth around an axial screw dislocation. The latter carry particular promise, e.g., for twistronics. In vdW nanowires, Eshelby twist─a progressive crystal rotation caused by the dislocation stress field─translates into interlayer twist that is precisely tunable via the wire diameter. Projected onto a helicoid vdW interface, the resulting twist moirés not only modify the electronic structure but also realize configurations without equivalent in planar systems, such as continuously variable twist and twist homojunctions.1D vdW nanostructures derive distinct functionality from both their layered structure and embedded defects. Correlated electron microscopy methods including imaging, nanobeam diffraction, as well as electron-stimulated local absorption and luminescence spectroscopies combine to an exceptionally powerful probe of this emerging functionality, identifying twist-moiré induced electronic modulations and chiral photonic modes, demonstrating the benign nature of defects in optoelectronics, and uncovering ferroelectricity via symmetry-breaking by single-layer stacking faults in vdW nanowires. Far-reaching possibilities for tuning crystal structure, morphology, and defects create a rich playground for the discovery of new functional nanomaterials based on vdW crystals. Given the prominence of defects and extensive prospects for controlling their character and placement during synthesis, 1D vdW nanostructures have the potential to cause a paradigm shift in the science of electronic materials, replacing the traditional strategy of suppressing crystal imperfections with an alternative philosophy that embraces the use of individual defects with designed properties as drivers of technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
秋半梦完成签到,获得积分10
15秒前
李爱国应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
打地鼠工人完成签到,获得积分10
19秒前
彩色半烟完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
25秒前
Ning完成签到,获得积分10
28秒前
图图完成签到,获得积分10
28秒前
勤奋的灯完成签到 ,获得积分10
28秒前
ludong_0完成签到,获得积分10
28秒前
Asumita完成签到,获得积分10
29秒前
双青豆完成签到 ,获得积分10
29秒前
31秒前
fxy完成签到 ,获得积分10
32秒前
合适的幻然完成签到,获得积分10
32秒前
沐雨汐完成签到,获得积分10
34秒前
36秒前
37秒前
jiayoujijin完成签到 ,获得积分10
37秒前
淡然思卉完成签到,获得积分10
38秒前
争当科研巨匠完成签到,获得积分10
38秒前
英姑应助认真的刺猬采纳,获得10
45秒前
好大一只小坏蛋完成签到,获得积分20
45秒前
站走跑完成签到 ,获得积分10
48秒前
步步高完成签到,获得积分10
50秒前
无私的雪瑶完成签到 ,获得积分10
50秒前
小杨完成签到,获得积分20
51秒前
小花完成签到 ,获得积分10
56秒前
宁夕完成签到 ,获得积分10
1分钟前
西宁完成签到,获得积分10
1分钟前
拼搏的羊青完成签到 ,获得积分10
1分钟前
科目三应助asd113采纳,获得10
1分钟前
deng203完成签到 ,获得积分20
1分钟前
1分钟前
时米米米完成签到,获得积分10
1分钟前
浅浅完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
帅气的藏鸟完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022