Intelligent ADL Recognition via IoT-Based Multimodal Deep Learning Framework

灵活性(工程) 可穿戴计算机 计算机科学 活动识别 物联网 深度学习 人工智能 卷积神经网络 日常生活活动 家庭自动化 无线传感器网络 图层(电子) 嵌入式系统 人机交互 辅助生活 多模态 机器学习 计算机网络 电信 医学 万维网 统计 化学 数学 护理部 有机化学 精神科
作者
Madiha Javeed,Naif Al Mudawi,Abdulwahab Alazeb,Sultan Almakdi,Saud S. Alotaibi,Samia Allaoua Chelloug,Ahmad Jalal
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (18): 7927-7927 被引量:1
标识
DOI:10.3390/s23187927
摘要

Smart home monitoring systems via internet of things (IoT) are required for taking care of elders at home. They provide the flexibility of monitoring elders remotely for their families and caregivers. Activities of daily living are an efficient way to effectively monitor elderly people at home and patients at caregiving facilities. The monitoring of such actions depends largely on IoT-based devices, either wireless or installed at different places. This paper proposes an effective and robust layered architecture using multisensory devices to recognize the activities of daily living from anywhere. Multimodality refers to the sensory devices of multiple types working together to achieve the objective of remote monitoring. Therefore, the proposed multimodal-based approach includes IoT devices, such as wearable inertial sensors and videos recorded during daily routines, fused together. The data from these multi-sensors have to be processed through a pre-processing layer through different stages, such as data filtration, segmentation, landmark detection, and 2D stick model. In next layer called the features processing, we have extracted, fused, and optimized different features from multimodal sensors. The final layer, called classification, has been utilized to recognize the activities of daily living via a deep learning technique known as convolutional neural network. It is observed from the proposed IoT-based multimodal layered system's results that an acceptable mean accuracy rate of 84.14% has been achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Li完成签到,获得积分10
1秒前
1秒前
ZHI发布了新的文献求助10
2秒前
3秒前
girl完成签到 ,获得积分10
3秒前
FashionBoy应助Jiang-Yujia采纳,获得10
5秒前
透视眼完成签到 ,获得积分10
5秒前
深情安青应助难过小懒虫采纳,获得10
6秒前
雍代天完成签到,获得积分10
7秒前
9秒前
gy发布了新的文献求助10
10秒前
科研通AI5应助佩弦采纳,获得10
13秒前
14秒前
英俊的铭应助leaf采纳,获得10
14秒前
15秒前
Zo发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
18秒前
18秒前
我是老大应助清爽幼枫采纳,获得10
18秒前
19秒前
科研通AI5应助幸福猎人1991采纳,获得10
21秒前
21秒前
21秒前
gy完成签到,获得积分20
22秒前
Jiang-Yujia发布了新的文献求助10
23秒前
kingwill完成签到,获得积分0
23秒前
lhclhcxhxh发布了新的文献求助10
23秒前
科研通AI2S应助风中的夜春采纳,获得10
23秒前
24秒前
大爱仙尊完成签到 ,获得积分10
25秒前
乐橙发布了新的文献求助10
25秒前
幸福猎人1991完成签到,获得积分10
26秒前
景平完成签到,获得积分10
28秒前
30秒前
30秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3680046
求助须知:如何正确求助?哪些是违规求助? 3232579
关于积分的说明 9803901
捐赠科研通 2943846
什么是DOI,文献DOI怎么找? 1614290
邀请新用户注册赠送积分活动 762136
科研通“疑难数据库(出版商)”最低求助积分说明 737237