Significant efficiency increment of spintronic terahertz emitters by oxygen engineering

太赫兹辐射 自旋电子学 材料科学 异质结 光电子学 自旋霍尔效应 凝聚态物理 铁磁性 自旋极化 电子 物理 量子力学
作者
Weiwei Li,Zhangzhang Cui,Yangkai Wang,Hao Cheng,Mo Zhu,Bing Xiong,Jianping Huang,Zheling Shan,Qiuping Huang,Zhengping Fu,Yalin Lu
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:123 (12)
标识
DOI:10.1063/5.0159703
摘要

Spintronic terahertz (THz) emitters have been intensively explored as next-generation sources of THz waves due to their low-cost, nanometer thickness, and broadband spectra. Growing research works are focusing on how to improve the THz emission efficiency, mainly by using a larger spin-Hall angle heavy metal. Currently, the highest intensity spintronic THz emission was based on a CoFeB/Pt heterostructure. Here, we significantly improve the THz emission intensity of CoFeB/Pt by a factor up to 270% through simply incorporating oxygen atoms into the Pt layer. The oxidation of a Pt layer generates a large extrinsic spin Hall angle, which promotes the spin-to-charge conversion of PtOx. Furthermore, the oxygen incorporation also causes a finite oxidation of CoFeB near the interface. We revealed that the significantly enhanced THz emission of CoFeB/PtOx is contributed by both the bulk inverse spin Hall effect of PtOx and the interface effect. Finally, we demonstrated that the oxygen engineering procedure to improve the THz emission of spintronic THz emitters is a common phenomenon as verified in examples, including Co/PtOx, NiFe/PtOx, CoFeB/WOx, and CoFeB/TaOx heterostructures. These findings show that an oxidized heavy metal is a simple, low-cost, and effective route to enhance the spin-to-charge conversion and achieve intense THz pulses, which is promising especially for on-chip THz devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yeteen发布了新的文献求助10
刚刚
刚刚
十一发布了新的文献求助10
刚刚
2秒前
4秒前
11111完成签到,获得积分10
4秒前
ding应助子不语采纳,获得10
4秒前
4秒前
5秒前
万能图书馆应助橙子采纳,获得10
5秒前
qqqq完成签到,获得积分10
5秒前
6秒前
wd34完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
香蕉觅云应助3333采纳,获得10
7秒前
乐乐应助烤麸采纳,获得10
8秒前
9秒前
菜鸟且小白完成签到,获得积分20
9秒前
9秒前
Simon1640发布了新的文献求助10
10秒前
轻松囧发布了新的文献求助10
10秒前
丘比特应助CNYDNZB采纳,获得10
10秒前
城南发布了新的文献求助10
11秒前
九日完成签到,获得积分10
12秒前
12秒前
背后寒烟发布了新的文献求助10
13秒前
小医森完成签到 ,获得积分10
13秒前
平淡伊布发布了新的文献求助10
13秒前
qqqq发布了新的文献求助10
14秒前
14秒前
14秒前
Dr_Seurin完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
虫子完成签到,获得积分10
18秒前
CipherSage应助无聊的板栗采纳,获得10
18秒前
研友_VZG7GZ应助TOP采纳,获得10
18秒前
典希子发布了新的文献求助30
18秒前
所所应助gao采纳,获得10
19秒前
3333发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656628
求助须知:如何正确求助?哪些是违规求助? 4804442
关于积分的说明 15076544
捐赠科研通 4814884
什么是DOI,文献DOI怎么找? 2576051
邀请新用户注册赠送积分活动 1531356
关于科研通互助平台的介绍 1489936