EAMNet: an Alzheimer’s disease prediction model based on representation learning

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 神经影像学 正电子发射断层摄影术 机器学习 医学 核医学 精神科
作者
Haoliang Duan,Huabin Wang,Yonglin Chen,Fei Liu,Liang Tao
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (21): 215005-215005 被引量:1
标识
DOI:10.1088/1361-6560/acfec8
摘要

Objective. Brain18F-FDG PET images indicate brain lesions' metabolic status and offer the predictive potential for Alzheimer's disease (AD). However, the complexity of extracting relevant lesion features and dealing with extraneous information in PET images poses challenges for accurate prediction.Approach. To address these issues, we propose an innovative solution called the efficient adaptive multiscale network (EAMNet) for predicting potential patient populations using positron emission tomography (PET) image slices, enabling effective intervention and treatment. Firstly, we introduce an efficient convolutional strategy to enhance the receptive field of PET images during the feature learning process, avoiding excessive extraction of fine tissue features by deep-level networks while reducing the model's computational complexity. Secondly, we construct a channel attention module that enables the prediction model to adaptively allocate weights between different channels, compensating for the spatial noise in PET images' impact on classification. Finally, we use skip connections to merge features from different-scale lesion information. Through visual analysis, the network constructed in this article aligns with the regions of interest of clinical doctors.Main results. Through visualization analysis, our network aligns with regions of interest identified by clinical doctors. Experimental evaluations conducted on the ADNI (Alzheimer's Disease Neuroimaging Initiative) dataset demonstrate the outstanding classification performance of our proposed method. The accuracy rates for AD versus NC (Normal Controls), AD versus MCI (Mild Cognitive Impairment), MCI versus NC, and AD versus MCI versus NC classifications achieve 97.66%, 96.32%, 95.23%, and 95.68%, respectively.Significance. The proposed method surpasses advanced algorithms in the field, providing a hopeful advancement in accurately predicting and classifying Alzheimer's Disease using18F-FDG PET images. The source code has been uploaded tohttps://github.com/Haoliang-D-AHU/EAMNet/tree/master.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaotian_fan完成签到,获得积分10
刚刚
Z121230发布了新的文献求助10
1秒前
ccc完成签到,获得积分10
2秒前
我讨厌文献综述完成签到 ,获得积分10
2秒前
2秒前
YElv完成签到,获得积分10
2秒前
科研达人发布了新的文献求助10
4秒前
5秒前
可yi完成签到,获得积分10
5秒前
笑点低的小天鹅完成签到 ,获得积分10
5秒前
1234发布了新的文献求助10
6秒前
6秒前
cocolu应助JHGG采纳,获得30
6秒前
6秒前
欧阳完成签到,获得积分10
7秒前
9秒前
likaixuanzzz完成签到 ,获得积分10
9秒前
一米阳光完成签到,获得积分10
10秒前
92567发布了新的文献求助30
11秒前
苗条小甜瓜完成签到,获得积分10
11秒前
mawanyu发布了新的文献求助10
12秒前
Someone完成签到,获得积分20
12秒前
梦初完成签到,获得积分20
12秒前
太吾墨完成签到,获得积分10
12秒前
柳易槐发布了新的文献求助10
12秒前
13秒前
科研通AI2S应助锅包肉采纳,获得10
13秒前
可以2完成签到,获得积分10
13秒前
14秒前
自然墨镜应助ajun采纳,获得10
16秒前
Laila发布了新的文献求助10
19秒前
李灿完成签到 ,获得积分10
19秒前
miumiu完成签到 ,获得积分20
19秒前
20秒前
小马甲应助1234采纳,获得10
20秒前
FashionBoy应助加厚加大采纳,获得10
21秒前
jj发布了新的文献求助30
21秒前
21秒前
堪尔风完成签到 ,获得积分10
22秒前
万雨斌完成签到,获得积分10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460894
求助须知:如何正确求助?哪些是违规求助? 3054804
关于积分的说明 9044831
捐赠科研通 2744673
什么是DOI,文献DOI怎么找? 1505633
科研通“疑难数据库(出版商)”最低求助积分说明 695745
邀请新用户注册赠送积分活动 695173