Digital twin-assisted resource allocation framework based on edge collaboration for vehicular edge computing

计算机科学 分布式计算 边缘计算 云计算 计算机网络 移动边缘计算 资源配置 延迟(音频) GSM演进的增强数据速率 马尔可夫决策过程 网络拥塞 边缘设备 启发式 马尔可夫过程 服务器 网络数据包 电信 统计 数学 操作系统
作者
Sekione Reward Jeremiah,Laurence T. Yang,Jong Hyuk Park
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:150: 243-254 被引量:30
标识
DOI:10.1016/j.future.2023.09.001
摘要

Vehicular Edge Computing (VEC) supports latency-sensitive and computation-intensive vehicular applications by providing caching and computing services in vehicle proximity. This reduces congestion and transmission latency. However, VEC faces implementation challenges due to high vehicle mobility and unpredictable network dynamics. These challenges pose difficulties to network resource allocation. Most existing VEC network resource management solutions consider edge–cloud collaboration and ignore collaborative computing between edge nodes. A reasonable collaboration between Roadside Units (RSUs) or small cells eNodeB can improve VEC network performance. Our proposed framework aims to improve VEC network performance by integrating Digital Twin (DT) technology which creates virtual replicas of network nodes to estimate, predict, and evaluate their real-time conditions. A DT is constructed centrally to maintain and simulate VEC network, thus enabling edge nodes collaboration and real-time resources information availability. We employ channel state information (CSI) for RSUs selection, and vehicles communicate with RSUs through a non-orthogonal multiple access (NOMA) protocol. We aim to maximize the VEC system computation rate and minimize task completion delay by jointly optimizing offloading decisions, subchannel allocation, and RSU association. In view of the resulting optimization problem complexity (NP-hard), we model it as a Markov Decision Process (MDP) and apply Advantage Actor–Critic (A2C) algorithm to solve it. Validated via simulations, our scheme shows superiority to the benchmarks in reducing task completion delay and improving VEC system computation rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吮指鸡发布了新的文献求助10
2秒前
一棵草发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
嗯嗯嗯发布了新的文献求助10
4秒前
5秒前
5秒前
laojian完成签到 ,获得积分10
6秒前
yeyeye完成签到,获得积分10
6秒前
6秒前
Ava应助zxm采纳,获得10
7秒前
8秒前
xiaohong发布了新的文献求助10
8秒前
cuidalice发布了新的文献求助10
8秒前
伊萨卡完成签到 ,获得积分10
9秒前
柠檬完成签到 ,获得积分10
9秒前
10秒前
bkagyin应助chensihao采纳,获得10
10秒前
细心可乐完成签到 ,获得积分10
10秒前
11秒前
dd完成签到 ,获得积分10
11秒前
研友_VZG7GZ应助312034采纳,获得10
12秒前
12秒前
道阻且长完成签到,获得积分10
12秒前
JG完成签到 ,获得积分10
13秒前
cuidalice完成签到,获得积分10
14秒前
谢123完成签到 ,获得积分10
14秒前
秦照荃发布了新的文献求助10
14秒前
tiny1111完成签到 ,获得积分10
17秒前
18秒前
20秒前
SYLH应助327采纳,获得10
21秒前
riccixuu完成签到 ,获得积分10
21秒前
高挑的牛青完成签到,获得积分10
22秒前
22秒前
淡然问儿完成签到,获得积分10
23秒前
24秒前
linkman发布了新的文献求助30
24秒前
陈一完成签到,获得积分10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958114
求助须知:如何正确求助?哪些是违规求助? 3504298
关于积分的说明 11117743
捐赠科研通 3235614
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547