Digital twin-assisted resource allocation framework based on edge collaboration for vehicular edge computing

计算机科学 分布式计算 边缘计算 云计算 计算机网络 移动边缘计算 资源配置 延迟(音频) GSM演进的增强数据速率 马尔可夫决策过程 网络拥塞 边缘设备 启发式 马尔可夫过程 服务器 网络数据包 电信 统计 操作系统 数学
作者
Sekione Reward Jeremiah,Laurence T. Yang,Jong Hyuk Park
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:150: 243-254 被引量:30
标识
DOI:10.1016/j.future.2023.09.001
摘要

Vehicular Edge Computing (VEC) supports latency-sensitive and computation-intensive vehicular applications by providing caching and computing services in vehicle proximity. This reduces congestion and transmission latency. However, VEC faces implementation challenges due to high vehicle mobility and unpredictable network dynamics. These challenges pose difficulties to network resource allocation. Most existing VEC network resource management solutions consider edge–cloud collaboration and ignore collaborative computing between edge nodes. A reasonable collaboration between Roadside Units (RSUs) or small cells eNodeB can improve VEC network performance. Our proposed framework aims to improve VEC network performance by integrating Digital Twin (DT) technology which creates virtual replicas of network nodes to estimate, predict, and evaluate their real-time conditions. A DT is constructed centrally to maintain and simulate VEC network, thus enabling edge nodes collaboration and real-time resources information availability. We employ channel state information (CSI) for RSUs selection, and vehicles communicate with RSUs through a non-orthogonal multiple access (NOMA) protocol. We aim to maximize the VEC system computation rate and minimize task completion delay by jointly optimizing offloading decisions, subchannel allocation, and RSU association. In view of the resulting optimization problem complexity (NP-hard), we model it as a Markov Decision Process (MDP) and apply Advantage Actor–Critic (A2C) algorithm to solve it. Validated via simulations, our scheme shows superiority to the benchmarks in reducing task completion delay and improving VEC system computation rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加油完成签到,获得积分10
1秒前
迷ni完成签到,获得积分10
2秒前
王宇完成签到,获得积分10
2秒前
努力的学完成签到,获得积分10
3秒前
3秒前
anna1992发布了新的文献求助10
3秒前
bqk完成签到,获得积分10
4秒前
安静的海角完成签到 ,获得积分10
5秒前
5秒前
JUll完成签到,获得积分10
8秒前
寄语明月发布了新的文献求助10
8秒前
8秒前
天荣完成签到,获得积分10
8秒前
8秒前
10秒前
Hello应助lllth采纳,获得10
13秒前
善良寄灵完成签到,获得积分10
13秒前
油麦菜发布了新的文献求助10
13秒前
开心完成签到,获得积分10
13秒前
nanonamo完成签到,获得积分10
13秒前
14秒前
xyw发布了新的文献求助10
15秒前
sdfwsdfsd发布了新的文献求助10
15秒前
17秒前
19秒前
19秒前
Cactus应助小巧的柏柳采纳,获得10
20秒前
DaLu完成签到,获得积分10
21秒前
22秒前
善学以致用应助Miao采纳,获得10
22秒前
xyw完成签到,获得积分20
22秒前
Joy发布了新的文献求助10
23秒前
科研通AI5应助天荣采纳,获得10
23秒前
runtang发布了新的文献求助10
23秒前
FAN应助韩韩采纳,获得10
25秒前
25秒前
26秒前
27秒前
yaya发布了新的文献求助10
29秒前
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737404
求助须知:如何正确求助?哪些是违规求助? 3281212
关于积分的说明 10023771
捐赠科研通 2997969
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782390
科研通“疑难数据库(出版商)”最低求助积分说明 749782