A variational autoencoder provides novel, data-driven features that explain functional brain representations in a naturalistic navigation task

自编码 计算机科学 人工智能 体素 编码(内存) 模式识别(心理学) 认知 机器学习 心理学 神经科学 人工神经网络
作者
Cheol Jun Cho,Tianjiao Zhang,Jack L. Gallant
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:23 (9): 5728-5728
标识
DOI:10.1167/jov.23.9.5728
摘要

Navigation in the real world is a complex task that engages several cognitive systems, brain regions and networks. Current models of brain systems mediating navigation reflect relatively simple psychological theories and so may miss important aspects of cognitive function in this complex task. Here we develop an alternative, data-driven approach that uses a variational autoencoder to generate novel hypotheses about brain representation during navigation. The key idea is to generate features from a trained autoencoder to create novel encoding models that successfully model brain activity. As a proof of concept, we applied this method to fMRI data acquired from three participants who performed a taxi-driver task in a large virtual environment. A spatiotemporal variational autoencoder was trained on the visual stimulus seen by the participants while they performed the task, and ridge regression was used to estimate voxelwise encoding models based on the latent features learned by the autoencoder. Inspection of the fit voxelwise encoding models shows that the latent autoencoder features explain variance in brain activity broadly across the cerebral cortex. To interpret the fit encoding models a new cluster analysis method called model connectivity (MC) was used to recover functional networks by grouping voxels according to their encoding model weights. MC recovers several different networks from the data, encompassing motor (M1 and S1), vision (V1-4), navigation (RSC, OPA, PPA, and PFC), and theory-of-mind (TPJ and PFC) ROIs and other regions of the cerebral cortex. Finally, to facilitate interpretation the average weights obtained within each identified cluster were decoded. This procedure revealed specific visual-motor features--such as approaching vehicles and destination instructions--that are preferentially represented in distinct functional networks. In sum, these preliminary data suggest that a variational autoencoder can reveal novel aspects of cortical representation during naturalistic navigation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助yyh采纳,获得10
刚刚
lalanlang发布了新的文献求助10
1秒前
丁丁丁完成签到,获得积分10
4秒前
7秒前
田様应助望月采纳,获得10
8秒前
脑洞疼应助赤橙采纳,获得10
8秒前
不配.应助壮观雁山采纳,获得10
8秒前
cocolu应助科研小白采纳,获得10
9秒前
SciGPT应助科研小白采纳,获得10
9秒前
11秒前
12秒前
菜鸡小尹发布了新的文献求助10
12秒前
15秒前
藤藤菜完成签到,获得积分20
15秒前
七七完成签到,获得积分10
16秒前
ali发布了新的文献求助10
17秒前
小鹿发布了新的文献求助10
18秒前
忧郁的访曼完成签到,获得积分10
18秒前
嘿嘿发布了新的文献求助10
20秒前
火星上的养鸡人完成签到,获得积分10
21秒前
菜鸡小尹完成签到,获得积分10
21秒前
22秒前
22秒前
23秒前
科研通AI2S应助端庄芙采纳,获得10
24秒前
无敌大流流完成签到,获得积分10
24秒前
bingxinl应助科研通管家采纳,获得20
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
wanci应助科研通管家采纳,获得10
24秒前
萧水白应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
CodeCraft应助科研通管家采纳,获得10
24秒前
25秒前
脑洞疼应助即将高产sci采纳,获得10
25秒前
fjiang2003发布了新的文献求助30
25秒前
D叫兽完成签到,获得积分0
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316416
求助须知:如何正确求助?哪些是违规求助? 2948109
关于积分的说明 8539240
捐赠科研通 2624069
什么是DOI,文献DOI怎么找? 1435722
科研通“疑难数据库(出版商)”最低求助积分说明 665672
邀请新用户注册赠送积分活动 651532