已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A variational autoencoder provides novel, data-driven features that explain functional brain representations in a naturalistic navigation task

自编码 计算机科学 人工智能 体素 编码(内存) 模式识别(心理学) 认知 机器学习 心理学 神经科学 人工神经网络
作者
Cheol Jun Cho,Tianjiao Zhang,Jack L. Gallant
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:23 (9): 5728-5728
标识
DOI:10.1167/jov.23.9.5728
摘要

Navigation in the real world is a complex task that engages several cognitive systems, brain regions and networks. Current models of brain systems mediating navigation reflect relatively simple psychological theories and so may miss important aspects of cognitive function in this complex task. Here we develop an alternative, data-driven approach that uses a variational autoencoder to generate novel hypotheses about brain representation during navigation. The key idea is to generate features from a trained autoencoder to create novel encoding models that successfully model brain activity. As a proof of concept, we applied this method to fMRI data acquired from three participants who performed a taxi-driver task in a large virtual environment. A spatiotemporal variational autoencoder was trained on the visual stimulus seen by the participants while they performed the task, and ridge regression was used to estimate voxelwise encoding models based on the latent features learned by the autoencoder. Inspection of the fit voxelwise encoding models shows that the latent autoencoder features explain variance in brain activity broadly across the cerebral cortex. To interpret the fit encoding models a new cluster analysis method called model connectivity (MC) was used to recover functional networks by grouping voxels according to their encoding model weights. MC recovers several different networks from the data, encompassing motor (M1 and S1), vision (V1-4), navigation (RSC, OPA, PPA, and PFC), and theory-of-mind (TPJ and PFC) ROIs and other regions of the cerebral cortex. Finally, to facilitate interpretation the average weights obtained within each identified cluster were decoded. This procedure revealed specific visual-motor features--such as approaching vehicles and destination instructions--that are preferentially represented in distinct functional networks. In sum, these preliminary data suggest that a variational autoencoder can reveal novel aspects of cortical representation during naturalistic navigation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
852应助微光熠采纳,获得10
刚刚
温暖书文完成签到,获得积分10
1秒前
SciGPT应助111采纳,获得10
1秒前
YY发布了新的文献求助30
1秒前
YEM发布了新的文献求助10
1秒前
zhangwenjie完成签到 ,获得积分10
2秒前
慕青应助坚强素采纳,获得30
2秒前
科研通AI2S应助科研通管家采纳,获得30
3秒前
3秒前
ceeray23应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
ceeray23应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
ceeray23应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
ceeray23应助科研通管家采纳,获得10
3秒前
清秀的小刺猬应助施少雄采纳,获得10
5秒前
bai发布了新的文献求助20
5秒前
Ql1987发布了新的文献求助10
6秒前
星熠完成签到,获得积分10
6秒前
7秒前
哆面体完成签到,获得积分10
8秒前
AngeW发布了新的文献求助100
12秒前
万能图书馆应助Bearbiscuit采纳,获得10
12秒前
Akim应助Bearbiscuit采纳,获得10
12秒前
大个应助Bearbiscuit采纳,获得10
12秒前
CodeCraft应助Bearbiscuit采纳,获得10
12秒前
李爱国应助Bearbiscuit采纳,获得10
12秒前
斯文败类应助Bearbiscuit采纳,获得10
12秒前
思源应助Bearbiscuit采纳,获得10
12秒前
英俊的铭应助Bearbiscuit采纳,获得10
13秒前
ding应助Bearbiscuit采纳,获得10
13秒前
情怀应助Bearbiscuit采纳,获得10
13秒前
15秒前
17秒前
bkagyin应助Bearbiscuit采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650260
求助须知:如何正确求助?哪些是违规求助? 4780326
关于积分的说明 15051616
捐赠科研通 4809184
什么是DOI,文献DOI怎么找? 2572075
邀请新用户注册赠送积分活动 1528266
关于科研通互助平台的介绍 1487102