An Enhanced Vision Transformer Model in Digital Twins Powered Internet of Medical Things for Pneumonia Diagnosis

计算机科学 人工智能 计算机视觉 推论 深度学习 医学诊断 自编码 互联网 机器学习 放射科 医学 万维网
作者
Lumin Xing,Wenjian Liu,Xiaoliang Liu,Xin Li
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (11): 3677-3689 被引量:1
标识
DOI:10.1109/jsac.2023.3310096
摘要

The computer-aided system and chest X-ray images play an important role in the diagnosis of pneumonia, which are the main way of pneumonia diagnosis. The traditional deep learning models have achieved some success in medical images, which captures the potential features of the image by continuously sliding the fixed convolution kernel. The disadvantage of this method is that it cannot effectively capture the long-distance dependencies in the image, and it does not have the ability of dynamic adaptive modeling. Next, the high-quality labeled data of chest X-ray images are very scarce. In order to achieve high-quality artificial intelligence diagnosis, a large number of high-quality annotated chest X-ray images are required. In this work, based on technologies such as Internet of Medical Things (IoMT) and Digital Twins, we built an intelligent IoMT platform for automatic diagnosis of pneumonia. For the digital twin of the lung, we propose an enhanced vision transformer model (EVTM) for analyzing chest X-ray images to determine whether the patient is infected with pneumonia. The EVTM model utilizes the vision transformer for training and inference on chest X-ray images. Then the EVTM model uses the variational autoencoder model for data augmentation, so that the amount of chest X-ray images meets the training requirements of the model. Finally, we conducted extensive experiments on the standard chest X-ray image dataset to verify the effectiveness of the EVTM model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助YooM采纳,获得10
刚刚
芋头完成签到,获得积分10
1秒前
柳大宝发布了新的文献求助10
1秒前
1秒前
1秒前
lili完成签到,获得积分10
1秒前
Hello应助孟韩采纳,获得10
1秒前
Johnny完成签到,获得积分10
2秒前
研友_VZG7GZ应助LHW采纳,获得10
2秒前
拾新发布了新的文献求助10
3秒前
殷勤的秋荷完成签到,获得积分20
3秒前
shaylie发布了新的文献求助10
4秒前
领导范儿应助优秀的枕头采纳,获得10
5秒前
温酒随行发布了新的文献求助10
5秒前
淡淡宛完成签到 ,获得积分0
6秒前
6秒前
6秒前
6秒前
Sink发布了新的文献求助10
7秒前
lili发布了新的文献求助20
9秒前
香蕉觅云应助小巧谷波采纳,获得10
9秒前
林昀发布了新的文献求助10
9秒前
爆米花应助柳大宝采纳,获得10
10秒前
善学以致用应助科研小白采纳,获得10
10秒前
11秒前
ss发布了新的文献求助10
12秒前
杨家辉发布了新的文献求助10
13秒前
13秒前
peanut发布了新的文献求助100
14秒前
沉静的怜蕾完成签到,获得积分10
14秒前
辛勤泥猴桃完成签到,获得积分10
15秒前
孟韩发布了新的文献求助10
16秒前
乐乐应助111采纳,获得10
16秒前
17秒前
ff完成签到,获得积分10
17秒前
Ava应助吉驴采纳,获得30
18秒前
19秒前
王兆烨完成签到,获得积分10
19秒前
19秒前
ww完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956566
求助须知:如何正确求助?哪些是违规求助? 3502673
关于积分的说明 11109597
捐赠科研通 3233488
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870674
科研通“疑难数据库(出版商)”最低求助积分说明 802143