已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Influencing mechanisms and decoupling effects of embodied carbon emissions: An analysis based on China's industrial sector

解耦(概率) 温室气体 第二经济部门 持续性 自然资源经济学 中国 环境经济学 环境科学 产业组织 经济 工程类 经济 生态学 政治学 控制工程 生物 法学
作者
Shengnan Cui,Ping Xu,Wang Yan-qiu,Yongjiang Shi,Chuang Liu
出处
期刊:Sustainable Production and Consumption [Elsevier BV]
卷期号:41: 320-333 被引量:8
标识
DOI:10.1016/j.spc.2023.08.012
摘要

Carbon emission reduction in industrial sectors is an important link to achieve green sustainability development. In this paper, non-competitive input-output model and structural decomposition model are constructed for measuring embodied carbon emissions of 28 industrial sectors and their decomposition factor effects in China. Additionally, the decoupling state between embodied carbon and economic growth is explored using the decoupling model. On this basis, key industrial sectors' decoupling influencing factors are analyzed. The results show that the embodied carbon emissions from the industrial sector grow at an average annual rate of 7.743 % during 2005–2020. Investment demand and urban consumption are the primary sources of embodied carbon emissions, and demand size can also significantly drive carbon emissions. However, energy efficiency is crucial to reducing carbon emissions. According to embodied carbon flows and network centrality size, six key industry sectors were identified. The number of industrial sectors achieving strong decoupling increased significantly in 2005–2020, but the key industrial sectors were dominated by expansionary negative decoupling. Further analysis showed that energy efficiency contributed to the strong decoupling, whereas demand scale would inhibit decoupling more significantly. These findings are valuable for proposing targeted strategies to reduce emissions, improve industrial efficiency and resilience for sustainable development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助健壮慕梅采纳,获得10
1秒前
归海浩阑应助健壮慕梅采纳,获得20
1秒前
生动的薯片完成签到 ,获得积分10
2秒前
盐茶厅人完成签到,获得积分10
2秒前
JQ发布了新的文献求助10
2秒前
今后应助野草采纳,获得10
3秒前
李健应助明亮的颖采纳,获得10
5秒前
任性铅笔发布了新的文献求助10
7秒前
年轻的幼蓉完成签到,获得积分20
8秒前
turbo完成签到,获得积分10
8秒前
脑洞疼应助超人研究生采纳,获得10
9秒前
meimei完成签到 ,获得积分10
9秒前
10秒前
10秒前
无心发布了新的文献求助10
12秒前
13秒前
kelite完成签到 ,获得积分10
14秒前
14秒前
结实智宸应助女爰舍予采纳,获得10
14秒前
mama完成签到 ,获得积分10
16秒前
zeight完成签到,获得积分10
17秒前
17秒前
18秒前
欢喜梦凡完成签到 ,获得积分10
19秒前
明亮的颖发布了新的文献求助10
19秒前
舒适听安完成签到,获得积分10
20秒前
直率定帮发布了新的文献求助10
22秒前
23秒前
helo发布了新的文献求助10
23秒前
陈彦宇完成签到 ,获得积分20
23秒前
24秒前
25秒前
王艳完成签到,获得积分20
26秒前
27秒前
28秒前
28秒前
29秒前
29秒前
dd发布了新的文献求助10
30秒前
001完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197317
求助须知:如何正确求助?哪些是违规求助? 4378660
关于积分的说明 13636710
捐赠科研通 4234455
什么是DOI,文献DOI怎么找? 2322730
邀请新用户注册赠送积分活动 1320896
关于科研通互助平台的介绍 1271517