Power Transformer Fault Diagnosis Based on Improved BP Neural Network

人工神经网络 变压器 溶解气体分析 工程类 支持向量机 残余物 断层(地质) 特征提取 计算机科学 可靠性工程 人工智能 模式识别(心理学) 电压 变压器油 电气工程 算法 地质学 地震学
作者
Yongshuang Jin,Hang Wu,Jianfeng Zheng,Ji Zhang,Liu Zhi
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (16): 3526-3526 被引量:18
标识
DOI:10.3390/electronics12163526
摘要

Power transformers are complex and extremely important piece of electrical equipment in a power system, playing an important role in changing voltage and transmitting electricity. Its operational status directly affects the stability and safety of power grids, and once a fault occurs, it may lead to significant economic losses and social impacts. The traditional detection methods rely on the technical level of power system operation and maintenance personnel, and are based on Dissolved Gas Analysis (DGA) technology, which analyzes the components of dissolved gases in transformer oil for preliminary fault diagnosis. However, with the increasing accuracy and intelligence requirements for transformer fault diagnosis in power grids, the DGA analysis method is no longer able to meet the requirements. Therefore, this article proposes an improved transformer fault diagnosis method based on a residual BP neural network. This method deepens the BP neural network by stacking multiple residual network modules, and fuses and expands gas feature information through an improved BP neural network. In the improved residual BP neural network, SVM is introduced to judge the extracted feature vectors at each layer, screen out feature vectors with high accuracy, and increase their weights. The feature vector with the highest cumulative weight is selected as an input for transformer fault diagnosis. This method utilizes multi-layer neural network mapping to extract gas feature information with more significant feature differences after fusion expansion, thereby effectively improving diagnostic accuracy. The experimental results show that, compared with traditional BP neural network methods, the proposed algorithm has higher accuracy in transformer fault diagnosis, with an accuracy rate of 92%, which can ensure the sustainable, normal, and safe operation of power grids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ouou完成签到,获得积分10
刚刚
orixero应助陆山菡采纳,获得10
刚刚
白石溪完成签到,获得积分10
1秒前
SYLH应助Master_Ye采纳,获得10
1秒前
2秒前
IvyLee发布了新的文献求助10
3秒前
3秒前
jarenthar完成签到 ,获得积分10
3秒前
烟花应助王其超采纳,获得10
3秒前
Minguk完成签到,获得积分10
4秒前
ch驳回了英姑应助
4秒前
娃娃菜发布了新的文献求助10
4秒前
PJ发布了新的文献求助10
4秒前
Blues汪完成签到,获得积分10
5秒前
Katherine发布了新的文献求助10
5秒前
能干戒指发布了新的文献求助10
6秒前
6秒前
英姑应助开朗阁采纳,获得10
6秒前
6秒前
7秒前
小豆豆应助织安采纳,获得30
7秒前
小马甲应助曲奇采纳,获得10
7秒前
iwww完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
lq发布了新的文献求助10
9秒前
负责石头完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
133完成签到,获得积分10
11秒前
野猪佩琪完成签到,获得积分10
12秒前
yuanquaner发布了新的文献求助10
12秒前
娃娃菜完成签到,获得积分10
12秒前
12秒前
PJ完成签到,获得积分10
13秒前
ding应助slim采纳,获得10
13秒前
jbhb发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950635
求助须知:如何正确求助?哪些是违规求助? 3496094
关于积分的说明 11080521
捐赠科研通 3226507
什么是DOI,文献DOI怎么找? 1783918
邀请新用户注册赠送积分活动 867946
科研通“疑难数据库(出版商)”最低求助积分说明 800993