Power Transformer Fault Diagnosis Based on Improved BP Neural Network

人工神经网络 变压器 溶解气体分析 工程类 支持向量机 残余物 断层(地质) 特征提取 计算机科学 可靠性工程 人工智能 模式识别(心理学) 电压 变压器油 电气工程 算法 地震学 地质学
作者
Yongshuang Jin,Hang Wu,Jianfeng Zheng,Ji Zhang,Liu Zhi
出处
期刊:Electronics [MDPI AG]
卷期号:12 (16): 3526-3526 被引量:18
标识
DOI:10.3390/electronics12163526
摘要

Power transformers are complex and extremely important piece of electrical equipment in a power system, playing an important role in changing voltage and transmitting electricity. Its operational status directly affects the stability and safety of power grids, and once a fault occurs, it may lead to significant economic losses and social impacts. The traditional detection methods rely on the technical level of power system operation and maintenance personnel, and are based on Dissolved Gas Analysis (DGA) technology, which analyzes the components of dissolved gases in transformer oil for preliminary fault diagnosis. However, with the increasing accuracy and intelligence requirements for transformer fault diagnosis in power grids, the DGA analysis method is no longer able to meet the requirements. Therefore, this article proposes an improved transformer fault diagnosis method based on a residual BP neural network. This method deepens the BP neural network by stacking multiple residual network modules, and fuses and expands gas feature information through an improved BP neural network. In the improved residual BP neural network, SVM is introduced to judge the extracted feature vectors at each layer, screen out feature vectors with high accuracy, and increase their weights. The feature vector with the highest cumulative weight is selected as an input for transformer fault diagnosis. This method utilizes multi-layer neural network mapping to extract gas feature information with more significant feature differences after fusion expansion, thereby effectively improving diagnostic accuracy. The experimental results show that, compared with traditional BP neural network methods, the proposed algorithm has higher accuracy in transformer fault diagnosis, with an accuracy rate of 92%, which can ensure the sustainable, normal, and safe operation of power grids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
益笙鸿老板完成签到 ,获得积分10
1秒前
2秒前
3秒前
香蕉觅云应助林佳缪采纳,获得30
4秒前
萧水白应助jia采纳,获得50
4秒前
sky完成签到,获得积分10
5秒前
Lei完成签到,获得积分10
7秒前
sky发布了新的文献求助10
7秒前
科研通AI2S应助菠萝炒饭采纳,获得10
9秒前
搜集达人应助苗老九采纳,获得10
9秒前
英俊的铭应助Tami采纳,获得10
10秒前
科研通AI2S应助mbf采纳,获得10
10秒前
打打应助wangbq采纳,获得10
11秒前
duoduo完成签到,获得积分10
12秒前
菠萝菠萝哒应助爬不起来采纳,获得10
12秒前
13秒前
雾蓝发布了新的文献求助10
15秒前
16秒前
zyx发布了新的文献求助30
16秒前
葳葳完成签到,获得积分10
17秒前
18秒前
张烤明完成签到,获得积分10
19秒前
彭于晏应助xxh采纳,获得10
19秒前
21秒前
22秒前
22秒前
fufufu123完成签到 ,获得积分10
23秒前
燕熙完成签到 ,获得积分10
24秒前
充电宝应助菠萝炒饭采纳,获得10
24秒前
点点完成签到 ,获得积分10
24秒前
LRRAM_809完成签到,获得积分10
24秒前
25秒前
26秒前
yhy发布了新的文献求助10
27秒前
平淡茈完成签到 ,获得积分10
27秒前
30秒前
xxh发布了新的文献求助10
31秒前
科研白小白应助菠萝炒饭采纳,获得80
32秒前
华仔应助Dr_Ma采纳,获得10
33秒前
34秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342775
求助须知:如何正确求助?哪些是违规求助? 2969845
关于积分的说明 8641422
捐赠科研通 2649779
什么是DOI,文献DOI怎么找? 1450890
科研通“疑难数据库(出版商)”最低求助积分说明 671993
邀请新用户注册赠送积分活动 661338