Intelligent Transmit Antenna Selection Schemes for High-Rate Fully Generalized Spatial Modulation

计算机科学 支持向量机 天线(收音机) 选择(遗传算法) 多输入多输出 误码率 调制(音乐) 人工智能 字错误率 机器学习 电信 频道(广播) 美学 哲学
作者
Hindavi Jadhav,Vinoth Babu Kumaravelu,Arthi Murugadass,Agbotiname Lucky Imoize,Poongundran Selvaprabhu,Arunkumar Chandrasekhar
出处
期刊:Future Internet [MDPI AG]
卷期号:15 (8): 281-281 被引量:1
标识
DOI:10.3390/fi15080281
摘要

The sixth-generation (6G) network is supposed to transmit significantly more data at much quicker rates than existing networks while meeting severe energy efficiency (EE) targets. The high-rate spatial modulation (SM) methods can be used to deal with these design metrics. SM uses transmit antenna selection (TAS) practices to improve the EE of the network. Although it is computationally intensive, free distance optimized TAS (FD-TAS) is the best for performing the average bit error rate (ABER). The present investigation aims to examine the effectiveness of various machine learning (ML)-assisted TAS practices, such as support vector machine (SVM), naïve Bayes (NB), K-nearest neighbor (KNN), and decision tree (DT), to the small-scale multiple-input multiple-output (MIMO)-based fully generalized spatial modulation (FGSM) system. To the best of our knowledge, there is no ML-based antenna selection schemes for high-rate FGSM. SVM-based TAS schemes achieve ∼71.1% classification accuracy, outperforming all other approaches. The ABER performance of each scheme is evaluated using a higher constellation order, along with various transmit antennas to achieve the target ABER of 10−5. By employing SVM for TAS, FGSM can achieve a minimal gain of ∼2.2 dB over FGSM without TAS (FGSM-NTAS). All TAS strategies based on ML perform better than FGSM-NTAS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈骏康发布了新的文献求助10
1秒前
dengdeng发布了新的文献求助10
2秒前
jinyu发布了新的文献求助10
2秒前
rr发布了新的文献求助10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
CodeCraft应助一一采纳,获得10
3秒前
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得30
3秒前
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
多乐多应助科研通管家采纳,获得10
4秒前
jjf发布了新的文献求助10
4秒前
狂野萤应助科研通管家采纳,获得10
4秒前
反恐分子应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
小许发布了新的文献求助10
6秒前
炙热晓露发布了新的文献求助10
6秒前
orixero应助韩豆乐采纳,获得10
6秒前
7秒前
烟花应助灯箱采纳,获得10
7秒前
7秒前
指尖的阿里阿德涅完成签到,获得积分10
8秒前
8秒前
申木发布了新的文献求助10
9秒前
寒冷书兰完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602562
求助须知:如何正确求助?哪些是违规求助? 4687654
关于积分的说明 14850581
捐赠科研通 4684527
什么是DOI,文献DOI怎么找? 2539963
邀请新用户注册赠送积分活动 1506690
关于科研通互助平台的介绍 1471428