A structural similarity networking assisted collision cross-section prediction interval filtering strategy for multi-compound identification of complex matrix by ion-mobility mass spectrometry

化学 离子迁移光谱法 基质(化学分析) 相似性(几何) 质谱法 分析化学(期刊) 模式识别(心理学) 生物系统 算法 人工智能 色谱法 计算机科学 图像(数学) 生物
作者
Jiahui Wen,An-Qi Guo,Meng-Ning Li,Hua Yang
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1278: 341720-341720 被引量:1
标识
DOI:10.1016/j.aca.2023.341720
摘要

Ion mobility coupled with mass spectrometry (IM-MS), an emerging technology for analysis of complex matrix, has been facing challenges due to the complexities of chemical structures and original data, as well as low-efficiency and error-proneness of manual operations. In this study, we developed a structural similarity networking assisted collision cross-section prediction interval filtering (SSN-CCSPIF) strategy. We first carried out a structural similarity networking (SSN) based on Tanimoto similarities among Morgan fingerprints to classify the authentic compounds potentially existing in complex matrix. By performing automatic regressive prediction statistics on mass-to-charge ratios (m/z) and collision cross-sections (CCS) with a self-built Python software, we explored the IM-MS feature trendlines, established filtering intervals and filtered potential compounds for each SSN classification. Chemical structures of all filtered compounds were further characterized by interpreting their multidimensional IM-MS data. To evaluate the applicability of SSN-CCSPIF, we selected Ginkgo biloba extract and dripping pills. The SSN-CCSPIF subtracted more background interferences (43.24%∼43.92%) than other similar strategies with conventional ClassyFire criteria (10.71%∼12.13%) or without compound classification (35.73%∼36.63%). Totally, 229 compounds, including eight potential new compounds, were characterized. Among them, seven isomeric pairs were discriminated with the integration of IM-separation. Using SSN-CCSPIF, we can achieve high-efficient analysis of complex IM-MS data and comprehensive chemical profiling of complex matrix to reveal their material basis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
FashionBoy应助炙热美女采纳,获得10
1秒前
1238125446完成签到,获得积分20
1秒前
脱壳金蝉完成签到,获得积分10
1秒前
1秒前
yu_z完成签到 ,获得积分10
2秒前
kk应助典雅的俊驰采纳,获得10
2秒前
开朗的板凳完成签到 ,获得积分10
2秒前
2秒前
哦豁应助卓卓采纳,获得10
2秒前
3秒前
传奇3应助火星上黑米采纳,获得10
3秒前
3秒前
趣多多发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
小鱼儿发布了新的文献求助10
3秒前
CipherSage应助小马一家采纳,获得10
4秒前
暗冰不冻应助GG波波采纳,获得30
4秒前
梓泽丘墟应助ES采纳,获得10
4秒前
5秒前
orixero应助风趣安青采纳,获得10
5秒前
ClaudiaY0发布了新的文献求助30
5秒前
5秒前
Yziii举报guojd求助涉嫌违规
5秒前
浮生完成签到 ,获得积分10
5秒前
5秒前
言余完成签到 ,获得积分10
7秒前
LEON完成签到,获得积分10
7秒前
Theshiled发布了新的文献求助10
7秒前
Hanson发布了新的文献求助10
8秒前
Kk发布了新的文献求助10
8秒前
ahead发布了新的文献求助10
8秒前
8秒前
8秒前
婧婧完成签到,获得积分10
8秒前
杨羊羊完成签到,获得积分10
9秒前
明亮的绫完成签到,获得积分20
9秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160777
求助须知:如何正确求助?哪些是违规求助? 2811863
关于积分的说明 7893780
捐赠科研通 2470702
什么是DOI,文献DOI怎么找? 1315762
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053