A structural similarity networking assisted collision cross-section prediction interval filtering strategy for multi-compound identification of complex matrix by ion-mobility mass spectrometry

化学 离子迁移光谱法 基质(化学分析) 相似性(几何) 质谱法 分析化学(期刊) 模式识别(心理学) 生物系统 算法 人工智能 色谱法 计算机科学 图像(数学) 生物
作者
Jiahui Wen,An-Qi Guo,Meng-Ning Li,Hua Yang
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1278: 341720-341720 被引量:1
标识
DOI:10.1016/j.aca.2023.341720
摘要

Ion mobility coupled with mass spectrometry (IM-MS), an emerging technology for analysis of complex matrix, has been facing challenges due to the complexities of chemical structures and original data, as well as low-efficiency and error-proneness of manual operations. In this study, we developed a structural similarity networking assisted collision cross-section prediction interval filtering (SSN-CCSPIF) strategy. We first carried out a structural similarity networking (SSN) based on Tanimoto similarities among Morgan fingerprints to classify the authentic compounds potentially existing in complex matrix. By performing automatic regressive prediction statistics on mass-to-charge ratios (m/z) and collision cross-sections (CCS) with a self-built Python software, we explored the IM-MS feature trendlines, established filtering intervals and filtered potential compounds for each SSN classification. Chemical structures of all filtered compounds were further characterized by interpreting their multidimensional IM-MS data. To evaluate the applicability of SSN-CCSPIF, we selected Ginkgo biloba extract and dripping pills. The SSN-CCSPIF subtracted more background interferences (43.24%∼43.92%) than other similar strategies with conventional ClassyFire criteria (10.71%∼12.13%) or without compound classification (35.73%∼36.63%). Totally, 229 compounds, including eight potential new compounds, were characterized. Among them, seven isomeric pairs were discriminated with the integration of IM-separation. Using SSN-CCSPIF, we can achieve high-efficient analysis of complex IM-MS data and comprehensive chemical profiling of complex matrix to reveal their material basis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Criminology34应助YEGE采纳,获得10
1秒前
顾北发布了新的文献求助10
1秒前
123发布了新的文献求助10
1秒前
2秒前
coco完成签到,获得积分10
2秒前
sunny完成签到,获得积分10
2秒前
泥豪泥嚎完成签到 ,获得积分10
3秒前
4秒前
4秒前
开放青旋应助小刘不牛采纳,获得20
4秒前
gjyr发布了新的文献求助10
5秒前
香蕉觅云应助麦兜采纳,获得10
5秒前
牙牙发布了新的文献求助10
5秒前
5秒前
求助人员发布了新的文献求助10
5秒前
bkagyin应助MAX33采纳,获得10
6秒前
魔幻雨梅发布了新的文献求助10
6秒前
6秒前
123完成签到,获得积分10
7秒前
上官若男应助温柔的尔芙采纳,获得10
7秒前
Twonej应助威武的夜绿采纳,获得20
7秒前
李爱国应助雪山飞龙采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
白潇潇发布了新的文献求助10
8秒前
彩虹小马发布了新的文献求助20
9秒前
紫藤完成签到,获得积分10
9秒前
9秒前
我不吃辣条完成签到,获得积分20
10秒前
penglinhua发布了新的文献求助10
10秒前
花卷发布了新的文献求助10
10秒前
11秒前
11秒前
apple红了完成签到 ,获得积分10
12秒前
CipherSage应助坦率曼寒采纳,获得10
13秒前
wanci应助丽优采纳,获得10
14秒前
15秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648490
求助须知:如何正确求助?哪些是违规求助? 4775560
关于积分的说明 15044364
捐赠科研通 4807469
什么是DOI,文献DOI怎么找? 2570809
邀请新用户注册赠送积分活动 1527552
关于科研通互助平台的介绍 1486499