MAN: Memory-augmented Attentive Networks for Deep Learning-based Knowledge Tracing

计算机科学 人工神经网络 人工智能 深度学习 追踪 背景(考古学) 任务(项目管理) 机器学习 循环神经网络 生物 操作系统 古生物学 经济 管理
作者
Liangliang He,Xiao Li,Pancheng Wang,Jintao Tang,Ting Wang
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (1): 1-22 被引量:3
标识
DOI:10.1145/3589340
摘要

Knowledge Tracing (KT) is the task of modeling a learner’s knowledge state to predict future performance in e-learning systems based on past performance. Deep learning-based methods, such as recurrent neural networks, memory-augmented neural networks, and attention-based neural networks, have recently been used in KT. Such methods have demonstrated excellent performance in capturing the latent dependencies of a learner’s knowledge state on recent exercises. However, these methods have limitations when it comes to dealing with the so-called Skill Switching Phenomenon (SSP), i.e., when learners respond to exercises in an e-learning system, the latent skills in the exercises typically switch irregularly. SSP will deteriorate the performance of deep learning-based approaches for simulating the learner’s knowledge state during skill switching, particularly when the association between the switching skills and the previously learned skills is weak. To address this problem, we propose the Memory-augmented Attentive Network (MAN), which combines the advantages of memory-augmented neural networks and attention-based neural networks. Specifically, in MAN, memory-augmented neural networks are used to model learners’ longer term memory knowledge, while attention-based neural networks are used to model learners’ recent term knowledge. In addition, we design a context-aware attention mechanism that automatically weighs the tradeoff between these two types of knowledge. With extensive experiments on several e-learning datasets, we show that MAN effectively improve predictive accuracies of existing state-of-the-art DLKT methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卜娜娜发布了新的文献求助10
2秒前
2秒前
5秒前
前夜完成签到,获得积分10
6秒前
7秒前
西陆完成签到,获得积分10
8秒前
钱邦国完成签到 ,获得积分10
8秒前
前夜发布了新的文献求助10
9秒前
花成花发布了新的文献求助10
10秒前
科研通AI2S应助jjb采纳,获得10
11秒前
脑洞疼应助健忘数据线采纳,获得10
11秒前
12秒前
haohaohao完成签到 ,获得积分20
13秒前
卜娜娜完成签到,获得积分20
16秒前
猴儿发布了新的文献求助10
18秒前
haohaohao关注了科研通微信公众号
18秒前
孤独映容完成签到,获得积分10
19秒前
19秒前
112233发布了新的文献求助10
20秒前
orixero应助科研小白采纳,获得10
21秒前
21秒前
21秒前
情怀应助bigstone采纳,获得10
21秒前
虚心的忆文完成签到,获得积分20
22秒前
852应助小柚采纳,获得10
23秒前
大海方间发布了新的文献求助10
23秒前
喜欢喝花露水完成签到,获得积分10
23秒前
24秒前
24秒前
xinjie发布了新的文献求助10
25秒前
26秒前
猴儿完成签到,获得积分10
26秒前
26秒前
hiha完成签到,获得积分10
26秒前
Hello发布了新的文献求助10
27秒前
28秒前
28秒前
打打应助啦啦啦采纳,获得10
28秒前
dddy发布了新的文献求助10
29秒前
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745123
求助须知:如何正确求助?哪些是违规求助? 3288044
关于积分的说明 10057300
捐赠科研通 3004289
什么是DOI,文献DOI怎么找? 1649632
邀请新用户注册赠送积分活动 785436
科研通“疑难数据库(出版商)”最低求助积分说明 751077