MAN: Memory-augmented Attentive Networks for Deep Learning-based Knowledge Tracing

计算机科学 人工神经网络 人工智能 深度学习 追踪 背景(考古学) 任务(项目管理) 机器学习 循环神经网络 古生物学 管理 经济 生物 操作系统
作者
Liangliang He,Xiao Li,Pancheng Wang,Jintao Tang,Ting Wang
出处
期刊:ACM Transactions on Information Systems 卷期号:42 (1): 1-22 被引量:2
标识
DOI:10.1145/3589340
摘要

Knowledge Tracing (KT) is the task of modeling a learner’s knowledge state to predict future performance in e-learning systems based on past performance. Deep learning-based methods, such as recurrent neural networks, memory-augmented neural networks, and attention-based neural networks, have recently been used in KT. Such methods have demonstrated excellent performance in capturing the latent dependencies of a learner’s knowledge state on recent exercises. However, these methods have limitations when it comes to dealing with the so-called Skill Switching Phenomenon (SSP), i.e., when learners respond to exercises in an e-learning system, the latent skills in the exercises typically switch irregularly. SSP will deteriorate the performance of deep learning-based approaches for simulating the learner’s knowledge state during skill switching, particularly when the association between the switching skills and the previously learned skills is weak. To address this problem, we propose the Memory-augmented Attentive Network (MAN), which combines the advantages of memory-augmented neural networks and attention-based neural networks. Specifically, in MAN, memory-augmented neural networks are used to model learners’ longer term memory knowledge, while attention-based neural networks are used to model learners’ recent term knowledge. In addition, we design a context-aware attention mechanism that automatically weighs the tradeoff between these two types of knowledge. With extensive experiments on several e-learning datasets, we show that MAN effectively improve predictive accuracies of existing state-of-the-art DLKT methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助pura卷卷采纳,获得10
刚刚
三百一十四完成签到 ,获得积分10
刚刚
sbmanishi完成签到,获得积分20
刚刚
大饼卷肉完成签到,获得积分10
1秒前
爆米花应助rendong4009采纳,获得30
1秒前
ShowMaker应助坚强的严青采纳,获得30
1秒前
浅香千雪发布了新的文献求助10
1秒前
2秒前
chen发布了新的文献求助10
2秒前
NexusExplorer应助sll采纳,获得10
2秒前
3秒前
俊逸梦蕊完成签到,获得积分20
4秒前
4秒前
11完成签到,获得积分10
5秒前
轻松的跳跳糖完成签到,获得积分10
6秒前
6秒前
lulull发布了新的文献求助10
6秒前
司徒迎曼发布了新的文献求助10
7秒前
7秒前
完美世界应助妮妮采纳,获得10
7秒前
体贴的若剑完成签到,获得积分10
8秒前
Hopelife完成签到,获得积分10
8秒前
qinz发布了新的文献求助10
9秒前
好困应助peanut采纳,获得10
9秒前
从容的小虾米完成签到,获得积分10
9秒前
1L完成签到,获得积分10
9秒前
10秒前
豆沙包发布了新的文献求助10
10秒前
10秒前
tfldog发布了新的文献求助10
10秒前
11秒前
晴天完成签到,获得积分10
11秒前
悦耳迎蕾完成签到,获得积分10
11秒前
加菲丰丰应助七只狐狸采纳,获得20
12秒前
万能图书馆应助啵叽一口采纳,获得10
12秒前
义气的元柏完成签到 ,获得积分10
13秒前
过昭关发布了新的文献求助10
14秒前
14秒前
14秒前
yunna_ning完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151134
求助须知:如何正确求助?哪些是违规求助? 2802621
关于积分的说明 7849140
捐赠科研通 2460009
什么是DOI,文献DOI怎么找? 1309425
科研通“疑难数据库(出版商)”最低求助积分说明 628915
版权声明 601757