ACGT-Net: Adaptive Cuckoo Refinement-Based Graph Transfer Network for Hyperspectral Image Classification

计算机科学 高光谱成像 图形 人工智能 布谷鸟搜索 卷积神经网络 模式识别(心理学) 算法 理论计算机科学 粒子群优化
作者
Yuanchao Su,Jiangyi Chen,Lianru Gao,Antonio Plaza,Mengying Jiang,Xiang Xu,Xu Sun,Pengfei Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:38
标识
DOI:10.1109/tgrs.2023.3307434
摘要

Deep learning (DL) has brought many new trends for hyperspectral image classification (HIC). Graph neural networks (GNNs) are models that fuse DL and structured data. Although GNN-based methods have focused on modeling relations, most of them are susceptible to noise, being adverse to capturing hidden correlations from data. Moreover, existing related approaches typically adopt changeless graph structures, which might lead to poor generalization. To solve the problems mentioned above, this paper develops an adaptive cuckoo refinement-based graph transfer network (ACGT-Net) that introduces a meta-heuristic optimization strategy to refine the graph structure. Specifically, we first pre-train a graph convolutional network (GCN) to learn transferable weight parameters. In the undirected graph, nodes are associated with pixels, and edges correspond to similarities between nodes. Afterward, we integrate a cuckoo search strategy (CSS) into the trained GCN to adaptively refine the graph structure. The graph structure refinement (GSR) with the CSS can pay more attention to significant channels by global optimization to improve the generalization of the GNN. Several experiments with real datasets verify the effectiveness and competitiveness of our ACGT-Net compared with other state-of-the-art (SOTA) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shaylie发布了新的文献求助10
1秒前
领导范儿应助优秀的枕头采纳,获得10
2秒前
温酒随行发布了新的文献求助10
2秒前
淡淡宛完成签到 ,获得积分0
3秒前
3秒前
3秒前
3秒前
Sink发布了新的文献求助10
4秒前
lili发布了新的文献求助20
6秒前
香蕉觅云应助小巧谷波采纳,获得10
6秒前
林昀发布了新的文献求助10
6秒前
爆米花应助柳大宝采纳,获得10
7秒前
善学以致用应助科研小白采纳,获得10
7秒前
8秒前
ss发布了新的文献求助10
9秒前
杨家辉发布了新的文献求助10
10秒前
10秒前
peanut发布了新的文献求助100
11秒前
沉静的怜蕾完成签到,获得积分10
11秒前
辛勤泥猴桃完成签到,获得积分10
12秒前
孟韩发布了新的文献求助10
13秒前
乐乐应助111采纳,获得10
13秒前
14秒前
ff完成签到,获得积分10
14秒前
Ava应助吉驴采纳,获得30
15秒前
16秒前
王兆烨完成签到,获得积分10
16秒前
16秒前
ww完成签到,获得积分10
17秒前
18秒前
沉默羔羊发布了新的文献求助10
20秒前
Ava应助ss采纳,获得10
20秒前
ww发布了新的文献求助10
20秒前
羊羊羊完成签到,获得积分10
22秒前
22秒前
23秒前
哆啦B梦发布了新的文献求助10
23秒前
小羊咩咩发布了新的文献求助10
23秒前
Lucas应助了该采纳,获得10
25秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956566
求助须知:如何正确求助?哪些是违规求助? 3502673
关于积分的说明 11109597
捐赠科研通 3233488
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870674
科研通“疑难数据库(出版商)”最低求助积分说明 802143