An integrated model for occupational health and safety risk assessment based on probabilistic linguistic information and social network consensus analysis

职业安全与健康 风险分析(工程) 计算机科学 概率逻辑 风险评估 风险管理 业务 医学 人工智能 计算机安全 财务 病理
作者
Hu‐Chen Liu,Jing-Hui Wang,Ling Zhang,Qin-Yu Chen
出处
期刊:Journal of the Operational Research Society [Informa]
卷期号:: 1-17 被引量:2
标识
DOI:10.1080/01605682.2023.2242371
摘要

Abstract As a critical activity in occupational risk management, the occupational health and safety risk assessment (OHSRA) aims at assessing occupational hazards in the workplace and prioritizing them to ensure employees’ safety and reduce occupational risk to an acceptable level. In this paper, we develop a new integrated OHSRA model for the risk evaluation and prioritization of occupational hazards based on probabilistic linguistic information and social network consensus analysis. The probabilistic linguistic term sets are applied to handle the hesitant risk evaluations of occupational hazards provided by experts. A combinative distance-based assessment technique is introduced for determining the risk priority of the identified occupational hazards. Additionally, the social network consensus analysis with minimum adjustment distance is used to help individual experts reach consensus. Finally, a healthcare case study is implemented for illustrating the developed OHSRA model and its effectiveness is validated with a sensitivity analysis and a comparative analysis.Keywords: Occupational health and safetyrisk assessmentexpert consensusprobabilistic linguistic term setcombinative distance-based assessment AcknowledgementsThe authors are very grateful to the respected editor and reviewers for their insightful and constructive comments and suggestions, which are very helpful in improving the quality of the paper.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis study was supported by the major project of National Social Science Fund of China (No. 21ZDA024) and the Fundamental Research Funds for the Central Universities (No. 22120230184).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
畸你太美发布了新的文献求助10
2秒前
坦率雁卉发布了新的文献求助10
4秒前
悠悠发布了新的文献求助10
5秒前
felon发布了新的文献求助10
6秒前
星辰大海应助林木木木子采纳,获得10
8秒前
YJY发布了新的文献求助10
8秒前
8秒前
wyfeiii关注了科研通微信公众号
9秒前
小二郎应助认真初之采纳,获得10
10秒前
12秒前
felon完成签到,获得积分10
13秒前
kong完成签到 ,获得积分10
14秒前
maox1aoxin应助yxj采纳,获得30
14秒前
NexusExplorer应助zhangyin2024采纳,获得10
16秒前
Chemvenus应助干净问筠采纳,获得10
16秒前
畸你太美完成签到,获得积分10
16秒前
曦哒哒阿完成签到 ,获得积分10
18秒前
uuu发布了新的文献求助10
19秒前
轩贝完成签到,获得积分10
19秒前
wanci应助JY采纳,获得10
19秒前
linp发布了新的文献求助10
19秒前
研友_VZG7GZ应助YJY采纳,获得10
19秒前
田様应助邹妮子采纳,获得10
20秒前
20秒前
寻道图强应助阿木采纳,获得30
22秒前
完美世界应助Gao采纳,获得10
22秒前
谨慎含双发布了新的文献求助10
23秒前
Zcccjy完成签到 ,获得积分10
23秒前
BNUKA发布了新的文献求助30
25秒前
25秒前
wyfeiii发布了新的文献求助10
25秒前
27秒前
zhangyin2024发布了新的文献求助10
28秒前
28秒前
28秒前
感动的沅完成签到,获得积分10
29秒前
dophin应助活泼饼干采纳,获得10
30秒前
30秒前
杨贵严发布了新的文献求助10
31秒前
DE发布了新的文献求助10
32秒前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3338542
求助须知:如何正确求助?哪些是违规求助? 2966712
关于积分的说明 8626263
捐赠科研通 2645895
什么是DOI,文献DOI怎么找? 1448923
科研通“疑难数据库(出版商)”最低求助积分说明 671298
邀请新用户注册赠送积分活动 659979