Optimization Model of Knowledge Graph Reasoning Process Based on Generative Adversarial Network

可解释性 计算机科学 人工智能 推论 机器学习 过程(计算) 图形 鉴别器 数据挖掘 理论计算机科学 电信 探测器 操作系统
作者
Yongyang Wang,Yongguo Han,Jing Liao
标识
DOI:10.1109/dsde58527.2023.00025
摘要

The knowledge map for most of the real world is incomplete, that is, there are problems of missing real facts and containing false facts. In recent years, most of the work, such as ConvE and TransE, reasoned the knowledge map by querying the implicit knowledge related to rules or based on the path, but the inference process was affected by large-scale long-distance and complex relationships, which led to the lack of interpretability and low training efficiency of the reasoning process. This paper proposed the optimization method of the reasoning process of the knowledge map based on the confrontation network, GAPO, The R-GCN auxiliary network is introduced into the GAN network to generate mixed data with high confidence as far as possible during the period of generating negative sample data, so as to improve the discriminator's ability to distinguish true and false triple facts. At the same time, reinforcement learning algorithm is introduced to treat the reasoning process of knowledge atlas as state space, and hierarchical information is used to ensure the reliability and authenticity of the reasoning link. The obtained hierarchical information data improves the interpretability of the reasoning process to a certain extent. The experiment shows that GAPO model has better performance than ConvE and TransE in reasoning, which proves that it is effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安谢完成签到,获得积分10
1秒前
852应助小张采纳,获得10
2秒前
活泼的飞双完成签到,获得积分10
3秒前
热情的板栗完成签到,获得积分10
3秒前
4秒前
Loooong应助汤姆采纳,获得10
4秒前
淡定雁开发布了新的文献求助10
4秒前
tianny发布了新的文献求助10
4秒前
111111111发布了新的文献求助10
5秒前
Mian发布了新的文献求助10
5秒前
5秒前
xiuwen完成签到,获得积分10
6秒前
TOMORI酱完成签到,获得积分10
9秒前
justin发布了新的文献求助10
9秒前
皮卡丘完成签到 ,获得积分10
10秒前
10秒前
TT发布了新的文献求助10
11秒前
夜空的光芒完成签到 ,获得积分10
12秒前
12秒前
乐一李完成签到,获得积分10
12秒前
会神完成签到,获得积分20
13秒前
天天快乐应助远方采纳,获得10
15秒前
烟花应助liuq采纳,获得10
15秒前
lixl0725完成签到 ,获得积分10
16秒前
专注秋尽发布了新的文献求助10
16秒前
科研小民工应助研友_LMg7PZ采纳,获得30
17秒前
宸哥完成签到,获得积分10
17秒前
眯眯眼的衬衫应助yanyan采纳,获得10
19秒前
Yue完成签到 ,获得积分10
19秒前
无限的含羞草完成签到,获得积分10
20秒前
大个应助WZ0904采纳,获得10
21秒前
Sofia发布了新的文献求助60
24秒前
25秒前
橘子姐姐发布了新的文献求助10
26秒前
yanyan完成签到,获得积分10
27秒前
TT完成签到,获得积分10
28秒前
28秒前
了然完成签到 ,获得积分10
29秒前
jxp完成签到,获得积分10
29秒前
jojo完成签到 ,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808