Optimization Model of Knowledge Graph Reasoning Process Based on Generative Adversarial Network

可解释性 计算机科学 人工智能 推论 机器学习 过程(计算) 图形 鉴别器 数据挖掘 理论计算机科学 电信 探测器 操作系统
作者
Yongyang Wang,Yongguo Han,Jing Liao
标识
DOI:10.1109/dsde58527.2023.00025
摘要

The knowledge map for most of the real world is incomplete, that is, there are problems of missing real facts and containing false facts. In recent years, most of the work, such as ConvE and TransE, reasoned the knowledge map by querying the implicit knowledge related to rules or based on the path, but the inference process was affected by large-scale long-distance and complex relationships, which led to the lack of interpretability and low training efficiency of the reasoning process. This paper proposed the optimization method of the reasoning process of the knowledge map based on the confrontation network, GAPO, The R-GCN auxiliary network is introduced into the GAN network to generate mixed data with high confidence as far as possible during the period of generating negative sample data, so as to improve the discriminator's ability to distinguish true and false triple facts. At the same time, reinforcement learning algorithm is introduced to treat the reasoning process of knowledge atlas as state space, and hierarchical information is used to ensure the reliability and authenticity of the reasoning link. The obtained hierarchical information data improves the interpretability of the reasoning process to a certain extent. The experiment shows that GAPO model has better performance than ConvE and TransE in reasoning, which proves that it is effective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助mumu采纳,获得30
刚刚
华仔应助专注的枫叶采纳,获得10
刚刚
纯真的元风完成签到,获得积分10
刚刚
刚刚
情怀应助zhuzhu采纳,获得10
刚刚
刚刚
微风往事发布了新的文献求助10
刚刚
刚刚
1秒前
开心的半仙完成签到,获得积分10
1秒前
大模型应助Yangfan采纳,获得10
1秒前
ding应助Gracywss采纳,获得20
1秒前
lh发布了新的文献求助10
1秒前
陶醉的代玉完成签到 ,获得积分10
2秒前
2秒前
LYJ完成签到,获得积分10
3秒前
ml完成签到 ,获得积分10
3秒前
罗是一完成签到,获得积分10
3秒前
爱吃泡芙完成签到,获得积分10
3秒前
3秒前
mirror完成签到,获得积分10
3秒前
zhs完成签到,获得积分10
4秒前
4秒前
4秒前
啦啦啦完成签到,获得积分10
5秒前
momo应助michael采纳,获得10
5秒前
5秒前
高高诗柳完成签到 ,获得积分10
5秒前
5秒前
Roger完成签到,获得积分10
5秒前
稳重蜗牛完成签到,获得积分10
5秒前
金岁岁完成签到 ,获得积分10
5秒前
大团长发布了新的文献求助10
6秒前
6秒前
6秒前
Echo发布了新的文献求助10
6秒前
谦让寄容完成签到,获得积分10
6秒前
6秒前
fan完成签到,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006