已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimization Model of Knowledge Graph Reasoning Process Based on Generative Adversarial Network

可解释性 计算机科学 人工智能 推论 机器学习 过程(计算) 图形 鉴别器 数据挖掘 理论计算机科学 电信 探测器 操作系统
作者
Yongyang Wang,Yongguo Han,Jing Liao
标识
DOI:10.1109/dsde58527.2023.00025
摘要

The knowledge map for most of the real world is incomplete, that is, there are problems of missing real facts and containing false facts. In recent years, most of the work, such as ConvE and TransE, reasoned the knowledge map by querying the implicit knowledge related to rules or based on the path, but the inference process was affected by large-scale long-distance and complex relationships, which led to the lack of interpretability and low training efficiency of the reasoning process. This paper proposed the optimization method of the reasoning process of the knowledge map based on the confrontation network, GAPO, The R-GCN auxiliary network is introduced into the GAN network to generate mixed data with high confidence as far as possible during the period of generating negative sample data, so as to improve the discriminator's ability to distinguish true and false triple facts. At the same time, reinforcement learning algorithm is introduced to treat the reasoning process of knowledge atlas as state space, and hierarchical information is used to ensure the reliability and authenticity of the reasoning link. The obtained hierarchical information data improves the interpretability of the reasoning process to a certain extent. The experiment shows that GAPO model has better performance than ConvE and TransE in reasoning, which proves that it is effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
黑大侠完成签到 ,获得积分0
3秒前
王顺顺发布了新的文献求助10
4秒前
alvin完成签到 ,获得积分10
5秒前
123完成签到,获得积分10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
陈思完成签到,获得积分10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
归尘应助科研通管家采纳,获得10
13秒前
田様应助陈鸿业采纳,获得10
13秒前
归尘应助科研通管家采纳,获得10
13秒前
归尘应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
14秒前
16秒前
18秒前
breeze完成签到,获得积分20
19秒前
20秒前
20秒前
研友_ZGRvon发布了新的文献求助10
21秒前
Gfi发布了新的文献求助30
24秒前
赘婿应助魔幻的夜柳采纳,获得10
30秒前
30秒前
30秒前
琪琪发布了新的文献求助10
33秒前
35秒前
黎遥完成签到,获得积分10
35秒前
倷倷完成签到 ,获得积分10
43秒前
45秒前
52秒前
53秒前
lalala发布了新的文献求助10
54秒前
Jasper应助快乐花生采纳,获得10
54秒前
科研通AI6应助自洽采纳,获得10
59秒前
Yulanda完成签到,获得积分10
59秒前
qiuqiu应助yume采纳,获得10
59秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
一个可爱的人完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488365
求助须知:如何正确求助?哪些是违规求助? 4587236
关于积分的说明 14413292
捐赠科研通 4518528
什么是DOI,文献DOI怎么找? 2475911
邀请新用户注册赠送积分活动 1461433
关于科研通互助平台的介绍 1434314