Optimization Model of Knowledge Graph Reasoning Process Based on Generative Adversarial Network

可解释性 计算机科学 人工智能 推论 机器学习 过程(计算) 图形 鉴别器 数据挖掘 理论计算机科学 电信 探测器 操作系统
作者
Yongyang Wang,Yongguo Han,Jing Liao
标识
DOI:10.1109/dsde58527.2023.00025
摘要

The knowledge map for most of the real world is incomplete, that is, there are problems of missing real facts and containing false facts. In recent years, most of the work, such as ConvE and TransE, reasoned the knowledge map by querying the implicit knowledge related to rules or based on the path, but the inference process was affected by large-scale long-distance and complex relationships, which led to the lack of interpretability and low training efficiency of the reasoning process. This paper proposed the optimization method of the reasoning process of the knowledge map based on the confrontation network, GAPO, The R-GCN auxiliary network is introduced into the GAN network to generate mixed data with high confidence as far as possible during the period of generating negative sample data, so as to improve the discriminator's ability to distinguish true and false triple facts. At the same time, reinforcement learning algorithm is introduced to treat the reasoning process of knowledge atlas as state space, and hierarchical information is used to ensure the reliability and authenticity of the reasoning link. The obtained hierarchical information data improves the interpretability of the reasoning process to a certain extent. The experiment shows that GAPO model has better performance than ConvE and TransE in reasoning, which proves that it is effective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率的跳跳糖完成签到 ,获得积分10
1秒前
流星发布了新的文献求助10
1秒前
脑洞疼应助北阳采纳,获得10
1秒前
2秒前
左丘忻完成签到,获得积分10
2秒前
鲤鱼怀绿发布了新的文献求助30
2秒前
2秒前
Nolan发布了新的文献求助10
3秒前
3秒前
独享发布了新的文献求助10
3秒前
所所应助吉他平方采纳,获得10
4秒前
4秒前
5秒前
6秒前
杨哈哈发布了新的文献求助10
6秒前
烟花应助凡凡采纳,获得10
7秒前
7秒前
7秒前
Jiang发布了新的文献求助10
7秒前
加菲不猫完成签到,获得积分10
8秒前
赵哥完成签到 ,获得积分10
9秒前
9秒前
Nolan完成签到,获得积分10
9秒前
江边的卡夫卡完成签到,获得积分10
9秒前
boluoboluo完成签到,获得积分10
9秒前
一颗星发布了新的文献求助10
10秒前
领导范儿应助高兴的向秋采纳,获得10
10秒前
10秒前
ypp完成签到,获得积分10
11秒前
Lucas应助背后的文博采纳,获得10
11秒前
夜蕾完成签到,获得积分10
12秒前
bias完成签到,获得积分10
12秒前
简单的元珊完成签到,获得积分10
12秒前
几两完成签到 ,获得积分10
12秒前
思源应助Nicheng采纳,获得10
13秒前
troyqiujing完成签到,获得积分0
14秒前
15秒前
赘婿应助白日生采纳,获得10
15秒前
kerwin应助冷傲的迎南采纳,获得20
16秒前
华仔应助一颗星采纳,获得10
16秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221340
求助须知:如何正确求助?哪些是违规求助? 2870099
关于积分的说明 8168990
捐赠科研通 2536895
什么是DOI,文献DOI怎么找? 1369109
科研通“疑难数据库(出版商)”最低求助积分说明 645367
邀请新用户注册赠送积分活动 619036