Optimization of a CHP system using a forecasting dispatch and teaching-learning-based optimization algorithm

粒子群优化 尺寸 按来源划分的电力成本 光伏系统 经济调度 柴油发电机 计算机科学 可再生能源 遗传算法 汽车工程 工程类 数学优化 电力系统 柴油 发电 功率(物理) 算法 电气工程 数学 艺术 视觉艺术 物理 量子力学
作者
Ashkan Toopshekan,Ali Abedian,Arian Azizi,Esmaeil Ahmadi,Mohammad Amin Vaziri Rad
出处
期刊:Energy [Elsevier]
卷期号:285: 128671-128671 被引量:15
标识
DOI:10.1016/j.energy.2023.128671
摘要

Using optimization algorithms and developing dispatch strategies are essential in sizing renewable energy systems to ensure optimal performance, cost-effectiveness, and sustainability. This study employs the Teaching-Learning-based Optimization (TLBO) algorithm to determine the optimal size of a Combined Heat and Power (CHP) system. The optimization results are validated using the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Furthermore, a novel dispatch strategy is developed to make an informed decision when using different energy sources. The strategy considers a 24-h foresight of upcoming electrical demand, solar irradiation, temperature, and wind speed. The developed dispatch strategy has led to a reduction in cost and excess electricity compared to the pre-prepared strategies. The energy sources employed include Photovoltaic panels (PV), Wind Turbines (WT), Diesel Generators (DG) with heat recovery capability, battery banks, and boilers to supply electrical and thermal demand. A Levelized cost of energy (LCOE) of 0.142 $/kWh is obtained for the PV/WT/DG/Battery/Boiler system. Although the three algorithms find almost similar optimal solutions, TLBO exhibits better convergence speed than PSO and GA. A comparison with HOMER software control strategies shows the developed dispatch strategy is 3.4% and 15.5% more efficient than Cycle Charging and Load Following strategies, respectively. Lastly, a comprehensive economic sensitivity analysis is performed to investigate the effect of inflation and discount rates on the size of components and final objective functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助术亦旺采纳,获得10
刚刚
Hello应助热情的戾采纳,获得10
1秒前
1秒前
所所应助纵使千千晚星采纳,获得10
2秒前
kem发布了新的文献求助10
2秒前
加油毕业发布了新的文献求助10
2秒前
啦啦啦完成签到,获得积分10
2秒前
小米完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
高高不高完成签到,获得积分10
5秒前
6秒前
6秒前
科研通AI5应助时光采纳,获得10
6秒前
共享精神应助Han采纳,获得10
7秒前
乔心发布了新的文献求助10
7秒前
Eve丶Paopaoxuan应助陈M雯采纳,获得10
7秒前
lmmmmmmmm完成签到,获得积分10
7秒前
hz发布了新的文献求助10
8秒前
8秒前
长情钥匙发布了新的文献求助10
8秒前
9秒前
千秋梧完成签到,获得积分10
9秒前
9秒前
GUO发布了新的文献求助10
10秒前
研友_LBR9gL完成签到 ,获得积分10
10秒前
YingFengLi完成签到,获得积分10
10秒前
马丁陌陌007完成签到 ,获得积分10
10秒前
11秒前
加油毕业完成签到,获得积分20
11秒前
云鲲完成签到,获得积分10
13秒前
111发布了新的文献求助10
13秒前
13秒前
Han完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
梁朝伟应助吃三口茄子采纳,获得20
16秒前
深情安青应助不安的妙之采纳,获得10
18秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476452
求助须知:如何正确求助?哪些是违规求助? 3068067
关于积分的说明 9106438
捐赠科研通 2759609
什么是DOI,文献DOI怎么找? 1514156
邀请新用户注册赠送积分活动 700093
科研通“疑难数据库(出版商)”最低求助积分说明 699284