Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids

析氧 材料科学 电化学 氧气 氧还原反应 纳米技术 化学工程 化学 电极 有机化学 工程类 物理化学
作者
Chengli Rong,Kamran Dastafkan,Yuan Wang,Chuan Zhao
出处
期刊:Advanced Materials [Wiley]
卷期号:35 (49) 被引量:88
标识
DOI:10.1002/adma.202211884
摘要

Oxygen evolution reaction (OER) is a cornerstone reaction for a variety of electrochemical energy conversion and storage systems such as water splitting, CO2 /N2 reduction, reversible fuel cells, and metal-air batteries. However, OER catalysis in acids suffers from extra sluggish kinetics due to the additional step of water dissociation along with its multiple electron transfer processes. Furthermore, OER catalysts often suffer from poor stability in harsh acidic electrolytes due to the severe dissolution/corrosion processes. The development of active and stable OER catalysts in acids is highly demanded. Here, the recent advances in OER electrocatalysis in acids are reviewed and the key strategies are summarized to overcome the bottlenecks of activity and stability for both noble-metal-based and noble metal-free catalysts, including i) morphology engineering, ii) composition engineering, and iii) defect engineering. Recent achievements in operando characterization and theoretical calculations are summarized which provide an unprecedented understanding of the OER mechanisms regarding active site identification, surface reconstruction, and degradation/dissolution pathways. Finally, views are offered on the current challenges and opportunities to break the activity-stability relationships for acidic OER in mechanism understanding, catalyst design, as well as standardized stability and activity evaluation for industrial applications such as proton exchange membrane water electrolyzers and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助深情的不评采纳,获得10
刚刚
飞快的梦易完成签到,获得积分10
1秒前
Akim应助1b采纳,获得10
1秒前
末岛完成签到,获得积分10
1秒前
sweetbearm应助benben采纳,获得10
1秒前
1秒前
2秒前
科研通AI5应助今今采纳,获得10
2秒前
通~发布了新的文献求助10
2秒前
YY完成签到,获得积分10
2秒前
首席医官完成签到,获得积分10
3秒前
坚定迎天完成签到,获得积分10
3秒前
Zzzoey发布了新的文献求助10
4秒前
搜集达人应助小罗飞飞飞采纳,获得10
4秒前
詹卫卫完成签到 ,获得积分10
4秒前
4秒前
宇_发布了新的文献求助20
4秒前
5秒前
esdeath发布了新的文献求助10
5秒前
云轩完成签到,获得积分10
5秒前
5秒前
5秒前
自然乐松发布了新的文献求助10
5秒前
yesir完成签到,获得积分10
6秒前
普雅花的等待完成签到,获得积分10
6秒前
想人陪的以云完成签到,获得积分10
7秒前
科研通AI5应助德德采纳,获得10
7秒前
NexusExplorer应助李来仪采纳,获得10
7秒前
威康宇宙发布了新的文献求助10
7秒前
小蘑菇应助润润轩轩采纳,获得10
7秒前
8秒前
8秒前
个性尔槐发布了新的文献求助10
8秒前
xiangxl完成签到,获得积分10
8秒前
fang完成签到 ,获得积分10
9秒前
汉堡包应助zhui采纳,获得10
9秒前
9秒前
万万完成签到,获得积分10
9秒前
sci完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794