亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

KSHFS: Research on Drug-Drug Interaction Prediction Based on Knowledge Subgraph and High-Order Feature-Aware Structure

计算机科学 特征(语言学) 二进制数 二元关系 数据挖掘 机器学习 二元分类 药品 噪音(视频) 人工智能 骨料(复合) 订单(交换) 情报检索 支持向量机 数学 医学 算术 离散数学 精神科 图像(数学) 语言学 哲学 材料科学 财务 复合材料 经济
作者
Nana Wang,Qian Gao,Jun Fan
出处
期刊:Communications in computer and information science 卷期号:: 493-506
标识
DOI:10.1007/978-981-99-8141-0_37
摘要

Effective drug-drug interaction (DDI) prediction can prevent adverse reactions and side effects caused by taking multiple drugs at the same time. However, most methods that obtain drug information through large-scale biomedical knowledge graphs (KGs), ignore the problem of high noise and complexity, and have certain limitations in obtaining rich neighborhood information for each entity in the KG. Therefore, this paper proposes an end-to-end method called Knowledge Subgraph and High-order Feature-aware Structure (KSHFS) to address DDI prediction. In KSHFS, this paper first designs a subgraph extraction module to reduce the noise caused by the KG, remove irrelevant information, and effectively utilize the entity information in external knowledge graphs to assist DDI prediction. Then, a high-order feature-aware module is designed to aggregate entity information propagated from high-order neighbors, learn high-order structural embeddings for each entity, and effectively capture potential semantic neighborhood features of drug pairs. Finally, in binary DDI prediction, a self-attention mechanism is used for feature fusion to predict drug interaction events. The experimental results demonstrate that the KSHFS model outperforms the baseline models in binary and multi-relation DDI prediction based on various evaluation metrics, including AUC, AUPR, and F1.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
侯锐淇完成签到 ,获得积分10
3秒前
5秒前
xiaowang发布了新的文献求助10
6秒前
moodlunatic发布了新的文献求助30
11秒前
qiuzhu_完成签到 ,获得积分10
16秒前
xiaowang完成签到,获得积分10
16秒前
ceeray23发布了新的文献求助20
16秒前
Hello应助小杨采纳,获得10
17秒前
123456完成签到,获得积分10
22秒前
moodlunatic完成签到,获得积分10
23秒前
25秒前
123456发布了新的文献求助20
26秒前
清爽冬莲完成签到 ,获得积分0
32秒前
34秒前
qiuzhu_发布了新的文献求助10
39秒前
41秒前
鲤鱼发布了新的文献求助10
47秒前
Yiyong发布了新的文献求助20
47秒前
47秒前
47秒前
科研通AI6应助古兰采纳,获得10
50秒前
52秒前
52秒前
55秒前
Nickzzz发布了新的文献求助10
56秒前
甜美的沅完成签到 ,获得积分10
59秒前
失眠的稀发布了新的文献求助10
1分钟前
1分钟前
倷倷完成签到 ,获得积分10
1分钟前
1分钟前
草莓星发布了新的文献求助10
1分钟前
Yanhai发布了新的文献求助10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
1分钟前
ceeray23发布了新的文献求助30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554672
求助须知:如何正确求助?哪些是违规求助? 4639324
关于积分的说明 14655924
捐赠科研通 4581173
什么是DOI,文献DOI怎么找? 2512637
邀请新用户注册赠送积分活动 1487389
关于科研通互助平台的介绍 1458262