清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Developing a Personalized E-Learning and MOOC Recommender System in IoT-Enabled Smart Education

计算机科学 推荐系统 机器学习 协同过滤 人工智能 随机森林 杠杆(统计) 决策树 水准点(测量) 大地测量学 地理
作者
Samina Amin,M. Irfan Uddin,Wali Khan Mashwani,Ala Abdulsalam Alarood,Abdulrahman Alzahrani,Ahmed Alzahrani
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 136437-136455 被引量:7
标识
DOI:10.1109/access.2023.3336676
摘要

Smart strategies and intelligent technologies are enabling the designing of a smart learning environment that successfully supports the development of personalized learning and adaptive learning. This trend towards integration is in line with the growing prevalence of Internet of Things (IoT)-enabled smart education systems, which can leverage Machine Learning (ML) techniques to provide Personalized Course Recommendations (PCR) to students. Furthermore, the existing recommendation techniques are based on either explicit or implicit feedback and fail to capture the changes in learners' preferences while integrating implicit or explicit feedback. To this end, this paper proposes a new model for personalized learning and PCR that is enabled by a smart E-Learning (EL) platform. The model aims to gather data on students' academic performance, interests, and learning preferences and utilize this data to recommend the courses that will be most beneficial to each student. The proposed approach makes suggestions based on the learner's interactions with the system and the cosine similarity in related contents by combining explicit (user ratings) and implicit (views and behavior) methodologies. The suggested method makes use of ML algorithms and an EL Recommender System (RecSys) based on Collaborative Filtering (CF).This includes Random Forest Regressor (RFR), Decision Tree Regressor (DTR), K-Nearest Neighbors (KNN), Singular Value Decomposition (SVD), eXtreme Gradient Boosting Regressor (XGBR), and Linear Regression (LR). The proposed solution is benchmarked against existing approaches on both predictive accuracy and running time. Experimental results are conducted based on two benchmark datasets (Coursera and Udemy). The proposed model outperforms existing top-K recommendations techniques in terms of accuracy metrics such as precision@k, Mean Average Precision (MAP)@k, recall@k, Normalized Discounted Cumulative Gain (NDCG)@k, Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) for PCR. From the experiments, it can be shown that SVD can perform well in terms of higher accuracy and MAP and NDCG and lower MAE, RMSE, and MSE values when contrasted to other proposed algorithms because it is better suited to capture complex student-course interactions. The proposed solutions are promising on two different datasets and can be applied to various RecSys domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zz完成签到 ,获得积分10
7秒前
wefor完成签到 ,获得积分10
21秒前
迷人的沛山完成签到 ,获得积分10
26秒前
申木完成签到 ,获得积分10
36秒前
段采萱完成签到 ,获得积分10
38秒前
黄花菜完成签到 ,获得积分10
1分钟前
风不尽,树不静完成签到 ,获得积分10
1分钟前
1分钟前
fff发布了新的文献求助10
1分钟前
空曲完成签到 ,获得积分10
1分钟前
LELE完成签到 ,获得积分10
1分钟前
王磊完成签到 ,获得积分10
2分钟前
emxzemxz完成签到 ,获得积分10
2分钟前
xun完成签到,获得积分10
2分钟前
焚心结完成签到 ,获得积分10
2分钟前
AUGKING27完成签到 ,获得积分10
2分钟前
秋子骞完成签到 ,获得积分10
2分钟前
su完成签到 ,获得积分10
2分钟前
大大蕾完成签到 ,获得积分10
2分钟前
Sophie发布了新的文献求助10
2分钟前
badgerwithfisher完成签到,获得积分10
2分钟前
深情安青应助fff采纳,获得10
3分钟前
小刘哥加油完成签到 ,获得积分10
3分钟前
spark810发布了新的文献求助10
3分钟前
Gary完成签到 ,获得积分10
3分钟前
飞天奶酪完成签到 ,获得积分10
3分钟前
文献搬运工完成签到 ,获得积分10
3分钟前
3分钟前
fff发布了新的文献求助10
4分钟前
SCINEXUS完成签到,获得积分0
4分钟前
蚂蚁踢大象完成签到 ,获得积分10
4分钟前
dream完成签到 ,获得积分10
4分钟前
简单幸福完成签到 ,获得积分10
4分钟前
Amic完成签到 ,获得积分10
4分钟前
Sino完成签到 ,获得积分10
4分钟前
梓歆完成签到 ,获得积分10
4分钟前
huazhangchina完成签到 ,获得积分10
4分钟前
Skywings完成签到,获得积分10
4分钟前
鹏程完成签到 ,获得积分10
5分钟前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068236
求助须知:如何正确求助?哪些是违规求助? 2722176
关于积分的说明 7476072
捐赠科研通 2369138
什么是DOI,文献DOI怎么找? 1256228
科研通“疑难数据库(出版商)”最低求助积分说明 609518
版权声明 596835