亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Developing a Personalized E-Learning and MOOC Recommender System in IoT-Enabled Smart Education

计算机科学 推荐系统 机器学习 协同过滤 人工智能 随机森林 杠杆(统计) 决策树 水准点(测量) 大地测量学 地理
作者
Samina Amin,M. Irfan Uddin,Wali Khan Mashwani,Ala Abdulsalam Alarood,Abdulrahman Alzahrani,Ahmed Alzahrani
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 136437-136455 被引量:7
标识
DOI:10.1109/access.2023.3336676
摘要

Smart strategies and intelligent technologies are enabling the designing of a smart learning environment that successfully supports the development of personalized learning and adaptive learning. This trend towards integration is in line with the growing prevalence of Internet of Things (IoT)-enabled smart education systems, which can leverage Machine Learning (ML) techniques to provide Personalized Course Recommendations (PCR) to students. Furthermore, the existing recommendation techniques are based on either explicit or implicit feedback and fail to capture the changes in learners' preferences while integrating implicit or explicit feedback. To this end, this paper proposes a new model for personalized learning and PCR that is enabled by a smart E-Learning (EL) platform. The model aims to gather data on students' academic performance, interests, and learning preferences and utilize this data to recommend the courses that will be most beneficial to each student. The proposed approach makes suggestions based on the learner's interactions with the system and the cosine similarity in related contents by combining explicit (user ratings) and implicit (views and behavior) methodologies. The suggested method makes use of ML algorithms and an EL Recommender System (RecSys) based on Collaborative Filtering (CF).This includes Random Forest Regressor (RFR), Decision Tree Regressor (DTR), K-Nearest Neighbors (KNN), Singular Value Decomposition (SVD), eXtreme Gradient Boosting Regressor (XGBR), and Linear Regression (LR). The proposed solution is benchmarked against existing approaches on both predictive accuracy and running time. Experimental results are conducted based on two benchmark datasets (Coursera and Udemy). The proposed model outperforms existing top-K recommendations techniques in terms of accuracy metrics such as precision@k, Mean Average Precision (MAP)@k, recall@k, Normalized Discounted Cumulative Gain (NDCG)@k, Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) for PCR. From the experiments, it can be shown that SVD can perform well in terms of higher accuracy and MAP and NDCG and lower MAE, RMSE, and MSE values when contrasted to other proposed algorithms because it is better suited to capture complex student-course interactions. The proposed solutions are promising on two different datasets and can be applied to various RecSys domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
35秒前
小鱼儿发布了新的文献求助10
44秒前
blueskyzhi完成签到,获得积分10
56秒前
andrele应助科研通管家采纳,获得10
59秒前
andrele应助科研通管家采纳,获得10
59秒前
1分钟前
Chen完成签到,获得积分10
2分钟前
不秃燃的小老弟完成签到 ,获得积分10
2分钟前
2分钟前
keraxia发布了新的文献求助10
2分钟前
keraxia完成签到,获得积分20
2分钟前
平淡剑鬼完成签到,获得积分10
2分钟前
2分钟前
2分钟前
柒末仙完成签到,获得积分10
2分钟前
隐形曼青应助柒末仙采纳,获得10
2分钟前
2分钟前
RONG完成签到 ,获得积分10
2分钟前
2分钟前
andrele应助科研通管家采纳,获得10
2分钟前
2分钟前
andrele应助科研通管家采纳,获得10
2分钟前
111完成签到 ,获得积分10
3分钟前
jiabu完成签到 ,获得积分10
3分钟前
WWW完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
斯文败类应助科研通管家采纳,获得30
4分钟前
小马甲应助科研通管家采纳,获得10
4分钟前
科目三应助眨眼采纳,获得10
5分钟前
5分钟前
伶俐的金连完成签到 ,获得积分10
5分钟前
眨眼发布了新的文献求助10
5分钟前
5分钟前
完美世界应助dfgrtbddffh采纳,获得10
5分钟前
liuyux发布了新的文献求助10
5分钟前
无花果应助眨眼采纳,获得10
5分钟前
倔大三应助liuyux采纳,获得10
5分钟前
5分钟前
眨眼发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845280
求助须知:如何正确求助?哪些是违规求助? 6200992
关于积分的说明 15616333
捐赠科研通 4962111
什么是DOI,文献DOI怎么找? 2675297
邀请新用户注册赠送积分活动 1620043
关于科研通互助平台的介绍 1575327