Developing a Personalized E-Learning and MOOC Recommender System in IoT-Enabled Smart Education

计算机科学 推荐系统 机器学习 协同过滤 人工智能 随机森林 杠杆(统计) 决策树 水准点(测量) 大地测量学 地理
作者
Samina Amin,M. Irfan Uddin,Wali Khan Mashwani,Ala Abdulsalam Alarood,Abdulrahman Alzahrani,Ahmed Alzahrani
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 136437-136455 被引量:7
标识
DOI:10.1109/access.2023.3336676
摘要

Smart strategies and intelligent technologies are enabling the designing of a smart learning environment that successfully supports the development of personalized learning and adaptive learning. This trend towards integration is in line with the growing prevalence of Internet of Things (IoT)-enabled smart education systems, which can leverage Machine Learning (ML) techniques to provide Personalized Course Recommendations (PCR) to students. Furthermore, the existing recommendation techniques are based on either explicit or implicit feedback and fail to capture the changes in learners' preferences while integrating implicit or explicit feedback. To this end, this paper proposes a new model for personalized learning and PCR that is enabled by a smart E-Learning (EL) platform. The model aims to gather data on students' academic performance, interests, and learning preferences and utilize this data to recommend the courses that will be most beneficial to each student. The proposed approach makes suggestions based on the learner's interactions with the system and the cosine similarity in related contents by combining explicit (user ratings) and implicit (views and behavior) methodologies. The suggested method makes use of ML algorithms and an EL Recommender System (RecSys) based on Collaborative Filtering (CF).This includes Random Forest Regressor (RFR), Decision Tree Regressor (DTR), K-Nearest Neighbors (KNN), Singular Value Decomposition (SVD), eXtreme Gradient Boosting Regressor (XGBR), and Linear Regression (LR). The proposed solution is benchmarked against existing approaches on both predictive accuracy and running time. Experimental results are conducted based on two benchmark datasets (Coursera and Udemy). The proposed model outperforms existing top-K recommendations techniques in terms of accuracy metrics such as precision@k, Mean Average Precision (MAP)@k, recall@k, Normalized Discounted Cumulative Gain (NDCG)@k, Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) for PCR. From the experiments, it can be shown that SVD can perform well in terms of higher accuracy and MAP and NDCG and lower MAE, RMSE, and MSE values when contrasted to other proposed algorithms because it is better suited to capture complex student-course interactions. The proposed solutions are promising on two different datasets and can be applied to various RecSys domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助耿新冉采纳,获得10
1秒前
LIJIngcan完成签到 ,获得积分10
1秒前
顾矜应助安静的幻竹采纳,获得10
1秒前
聂先生完成签到,获得积分10
2秒前
传奇3应助sereno采纳,获得10
2秒前
cyw完成签到,获得积分10
4秒前
HT发布了新的文献求助200
8秒前
Zz完成签到 ,获得积分10
9秒前
俏皮的凝梦完成签到,获得积分10
9秒前
10秒前
耿新冉完成签到,获得积分10
12秒前
Haibrar完成签到 ,获得积分10
14秒前
糖丸完成签到,获得积分10
15秒前
sereno发布了新的文献求助10
15秒前
852应助Y哦莫哦莫采纳,获得10
15秒前
傻傻的霆完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
牛牛牛发布了新的文献求助10
20秒前
万能图书馆应助多多采纳,获得10
21秒前
科研通AI6.1应助周诣扬采纳,获得10
23秒前
23秒前
灵巧越泽发布了新的文献求助10
24秒前
天天快乐应助ai采纳,获得10
24秒前
weic100给weic100的求助进行了留言
25秒前
27秒前
nessa完成签到 ,获得积分10
29秒前
CodeCraft应助多多采纳,获得10
31秒前
32秒前
心灵美傲薇完成签到 ,获得积分10
33秒前
34秒前
34秒前
明理书萱完成签到,获得积分10
34秒前
35秒前
辛勤如柏完成签到,获得积分10
35秒前
Lynn完成签到,获得积分10
38秒前
ai发布了新的文献求助10
41秒前
舒适的雨完成签到 ,获得积分10
44秒前
周诣扬完成签到,获得积分20
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Psychological Well-being The Complexities of Mental and Emotional Health 500
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5856771
求助须知:如何正确求助?哪些是违规求助? 6324270
关于积分的说明 15635227
捐赠科研通 4971235
什么是DOI,文献DOI怎么找? 2681250
邀请新用户注册赠送积分活动 1625184
关于科研通互助平台的介绍 1582223