Developing a Personalized E-Learning and MOOC Recommender System in IoT-Enabled Smart Education

计算机科学 推荐系统 机器学习 协同过滤 人工智能 随机森林 杠杆(统计) 决策树 水准点(测量) 大地测量学 地理
作者
Samina Amin,M. Irfan Uddin,Wali Khan Mashwani,Ala Abdulsalam Alarood,Abdulrahman Alzahrani,Ahmed Alzahrani
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 136437-136455 被引量:7
标识
DOI:10.1109/access.2023.3336676
摘要

Smart strategies and intelligent technologies are enabling the designing of a smart learning environment that successfully supports the development of personalized learning and adaptive learning. This trend towards integration is in line with the growing prevalence of Internet of Things (IoT)-enabled smart education systems, which can leverage Machine Learning (ML) techniques to provide Personalized Course Recommendations (PCR) to students. Furthermore, the existing recommendation techniques are based on either explicit or implicit feedback and fail to capture the changes in learners' preferences while integrating implicit or explicit feedback. To this end, this paper proposes a new model for personalized learning and PCR that is enabled by a smart E-Learning (EL) platform. The model aims to gather data on students' academic performance, interests, and learning preferences and utilize this data to recommend the courses that will be most beneficial to each student. The proposed approach makes suggestions based on the learner's interactions with the system and the cosine similarity in related contents by combining explicit (user ratings) and implicit (views and behavior) methodologies. The suggested method makes use of ML algorithms and an EL Recommender System (RecSys) based on Collaborative Filtering (CF).This includes Random Forest Regressor (RFR), Decision Tree Regressor (DTR), K-Nearest Neighbors (KNN), Singular Value Decomposition (SVD), eXtreme Gradient Boosting Regressor (XGBR), and Linear Regression (LR). The proposed solution is benchmarked against existing approaches on both predictive accuracy and running time. Experimental results are conducted based on two benchmark datasets (Coursera and Udemy). The proposed model outperforms existing top-K recommendations techniques in terms of accuracy metrics such as precision@k, Mean Average Precision (MAP)@k, recall@k, Normalized Discounted Cumulative Gain (NDCG)@k, Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) for PCR. From the experiments, it can be shown that SVD can perform well in terms of higher accuracy and MAP and NDCG and lower MAE, RMSE, and MSE values when contrasted to other proposed algorithms because it is better suited to capture complex student-course interactions. The proposed solutions are promising on two different datasets and can be applied to various RecSys domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正好完成签到,获得积分10
刚刚
刚刚
Singularity应助A班袁湘琴采纳,获得10
刚刚
善学以致用应助SigRosa采纳,获得10
1秒前
1秒前
2秒前
雨山发布了新的文献求助10
2秒前
2秒前
sophia完成签到,获得积分10
3秒前
xfq完成签到,获得积分10
3秒前
小二郎应助stuart采纳,获得10
4秒前
顾矜应助甜美的绮菱采纳,获得10
4秒前
呆萌冰绿完成签到,获得积分10
4秒前
淳之风完成签到,获得积分10
5秒前
海茵发布了新的文献求助10
5秒前
小雪发布了新的文献求助10
6秒前
善学以致用应助Final采纳,获得10
6秒前
6秒前
zuizui完成签到,获得积分10
6秒前
7秒前
活蹦乱跳二愣子完成签到,获得积分10
7秒前
锁指导发布了新的文献求助10
7秒前
bxyyy应助粗心的智慧采纳,获得10
8秒前
顾矜应助舒屿望迷采纳,获得10
9秒前
9秒前
10秒前
笑笑最可爱完成签到,获得积分10
10秒前
夏夏完成签到,获得积分10
11秒前
12秒前
ggg完成签到,获得积分10
13秒前
13秒前
14秒前
陈远青发布了新的文献求助10
14秒前
15秒前
赘婿应助许子健采纳,获得10
16秒前
海茵完成签到,获得积分10
17秒前
17秒前
17秒前
zhou默完成签到,获得积分10
18秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958563
求助须知:如何正确求助?哪些是违规求助? 3504871
关于积分的说明 11120709
捐赠科研通 3236153
什么是DOI,文献DOI怎么找? 1788666
邀请新用户注册赠送积分活动 871279
科研通“疑难数据库(出版商)”最低求助积分说明 802646