Developing a Personalized E-Learning and MOOC Recommender System in IoT-Enabled Smart Education

计算机科学 推荐系统 机器学习 协同过滤 人工智能 随机森林 杠杆(统计) 决策树 水准点(测量) 大地测量学 地理
作者
Samina Amin,M. Irfan Uddin,Wali Khan Mashwani,Ala Abdulsalam Alarood,Abdulrahman Alzahrani,Ahmed Alzahrani
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 136437-136455 被引量:7
标识
DOI:10.1109/access.2023.3336676
摘要

Smart strategies and intelligent technologies are enabling the designing of a smart learning environment that successfully supports the development of personalized learning and adaptive learning. This trend towards integration is in line with the growing prevalence of Internet of Things (IoT)-enabled smart education systems, which can leverage Machine Learning (ML) techniques to provide Personalized Course Recommendations (PCR) to students. Furthermore, the existing recommendation techniques are based on either explicit or implicit feedback and fail to capture the changes in learners' preferences while integrating implicit or explicit feedback. To this end, this paper proposes a new model for personalized learning and PCR that is enabled by a smart E-Learning (EL) platform. The model aims to gather data on students' academic performance, interests, and learning preferences and utilize this data to recommend the courses that will be most beneficial to each student. The proposed approach makes suggestions based on the learner's interactions with the system and the cosine similarity in related contents by combining explicit (user ratings) and implicit (views and behavior) methodologies. The suggested method makes use of ML algorithms and an EL Recommender System (RecSys) based on Collaborative Filtering (CF).This includes Random Forest Regressor (RFR), Decision Tree Regressor (DTR), K-Nearest Neighbors (KNN), Singular Value Decomposition (SVD), eXtreme Gradient Boosting Regressor (XGBR), and Linear Regression (LR). The proposed solution is benchmarked against existing approaches on both predictive accuracy and running time. Experimental results are conducted based on two benchmark datasets (Coursera and Udemy). The proposed model outperforms existing top-K recommendations techniques in terms of accuracy metrics such as precision@k, Mean Average Precision (MAP)@k, recall@k, Normalized Discounted Cumulative Gain (NDCG)@k, Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) for PCR. From the experiments, it can be shown that SVD can perform well in terms of higher accuracy and MAP and NDCG and lower MAE, RMSE, and MSE values when contrasted to other proposed algorithms because it is better suited to capture complex student-course interactions. The proposed solutions are promising on two different datasets and can be applied to various RecSys domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
xiuxiuzhang发布了新的文献求助10
3秒前
5秒前
317发布了新的文献求助10
6秒前
不打游戏_完成签到,获得积分10
6秒前
t1完成签到,获得积分10
6秒前
充电宝应助zyh采纳,获得10
6秒前
ILUIGANG发布了新的文献求助10
7秒前
zzq完成签到,获得积分20
8秒前
杨气罐完成签到,获得积分10
9秒前
9秒前
9秒前
猪皮恶人发布了新的文献求助30
9秒前
Victoria发布了新的文献求助10
10秒前
sdnihbhew发布了新的文献求助10
11秒前
小马完成签到 ,获得积分10
11秒前
共享精神应助317采纳,获得10
12秒前
12秒前
善学以致用应助ZH采纳,获得10
12秒前
sukasuka发布了新的文献求助30
12秒前
李思超发布了新的文献求助230
13秒前
yp完成签到,获得积分10
13秒前
暴富解忧完成签到,获得积分10
15秒前
王稀松发布了新的文献求助10
15秒前
15秒前
zyh完成签到,获得积分20
15秒前
壮观问寒应助任仕春采纳,获得10
15秒前
16秒前
执着亿先完成签到 ,获得积分10
17秒前
小马发布了新的文献求助10
17秒前
yahage完成签到 ,获得积分20
18秒前
18秒前
周舟发布了新的文献求助10
18秒前
楠楠完成签到,获得积分10
18秒前
20秒前
万万想到了完成签到,获得积分10
20秒前
万能图书馆应助xl采纳,获得10
20秒前
21秒前
lixue1993应助ZH采纳,获得10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154159
求助须知:如何正确求助?哪些是违规求助? 2805038
关于积分的说明 7863014
捐赠科研通 2463114
什么是DOI,文献DOI怎么找? 1311158
科研通“疑难数据库(出版商)”最低求助积分说明 629464
版权声明 601821