Enhancing LSTM and Fusing Articles of Law for Legal Text Summarization

自动汇总 计算机科学 判决 情报检索 自然语言处理 人工智能 法律文件 多文档摘要 信息抽取 法律案件 特征提取 特征(语言学) 语言学 法学 哲学 政治学
作者
Zhe Chen,Lin Ye,Hongli Zhang
出处
期刊:Communications in computer and information science 卷期号:: 110-124
标识
DOI:10.1007/978-981-99-8181-6_9
摘要

The growing number of public legal documents has led to an increased demand for automatic summarization. Considering the well-organized structure of legal documents, extractive methods can be an efficient method for text summarization. Generic text summarisation models extract based on textual semantic information, ignoring the important role of topic information and articles of law in legal text summarization. In addition, the LSTM model fails to capture global topic information and suffers from long-distance information loss when dealing with legal texts that belong to long texts. In this paper, we propose a method for summarization extraction in the legal domain, which is based on enhanced LSTM and aggregated legal article information. The enhanced LSTM is an improvement of the LSTM model by fusing text topic vectors and introducing slot storage units. Topic information is applied to interact with sentences. The slot memory unit is applied to model the long-range relationship between sentences. The enhanced LSTM helps to improve the feature extraction of legal texts. The articles of law after being encoded is applied to the sentence classification to improve the performance of the model for summary extraction. We conduct experiments on the Chinese legal text summarization dataset, the experimental results demonstrate that our proposed method outperforms the baseline methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QQ完成签到 ,获得积分10
3秒前
芊芊完成签到 ,获得积分10
4秒前
4秒前
0001发布了新的文献求助10
4秒前
tracer526发布了新的文献求助10
7秒前
3344完成签到,获得积分10
8秒前
8秒前
9秒前
BWRESEARCH完成签到,获得积分10
11秒前
Verity应助我要那片海采纳,获得10
11秒前
张逍遥发布了新的文献求助10
12秒前
warithy应助科研通管家采纳,获得10
13秒前
yyzhou应助科研通管家采纳,获得10
13秒前
14秒前
蓝天应助科研通管家采纳,获得10
14秒前
飘飘玲应助科研通管家采纳,获得10
14秒前
Zewen_Li应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
六月疏雨应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
yyzhou应助科研通管家采纳,获得10
14秒前
Zewen_Li应助科研通管家采纳,获得10
14秒前
Ting完成签到,获得积分10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
六月疏雨应助科研通管家采纳,获得10
14秒前
GE应助科研通管家采纳,获得10
14秒前
蓝天应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
六月疏雨应助科研通管家采纳,获得10
14秒前
shhoing应助科研通管家采纳,获得10
14秒前
yyzhou应助科研通管家采纳,获得10
14秒前
14秒前
萨尔莫斯发布了新的文献求助10
19秒前
21秒前
23秒前
bkagyin应助花小胖采纳,获得10
23秒前
那些年完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560383
求助须知:如何正确求助?哪些是违规求助? 4645536
关于积分的说明 14675482
捐赠科研通 4586681
什么是DOI,文献DOI怎么找? 2516518
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951