清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Data-driven distributionally robust timetabling and dynamic-capacity allocation for automated bus systems with modular vehicles

计算机科学 数学优化 模块化设计 稳健优化 模棱两可 背景(考古学) 整数规划 集合(抽象数据类型) 运筹学 最优化问题 计算 工程类 数学 算法 古生物学 生物 程序设计语言 操作系统
作者
Dongyang Xia,Jihui Ma,Shadi Sharif Azadeh,Wenyi Zhang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:155: 104314-104314 被引量:10
标识
DOI:10.1016/j.trc.2023.104314
摘要

The collaborative design of the timetable and dynamic-capacity allocation plan of emerging modular vehicles (MVs) is a promising solution to the mismatch between supply and demand in public transportation studies; however, such efforts are subject to high-level dynamics and uncertainty inherent in operating environments. In this study, we focus on the timetabling and dynamic-capacity allocation problem of MVs within the context of distributionally robust optimization under time-dependent demand uncertainty. The dynamic capacity refers to the number of modular units (MUs) comprising an MV can be potentially changed at different times and stops. A Wasserstein distance-based ambiguity set with a time-dependent and station-wise perturbation parameter is adopted to incorporate all potential distributions within a 1-Wasserstein distance for addressing the uncertainty of passenger demand. Further, a data-driven distributionally robust optimization model that considers time-varying capacity is formulated to minimize passenger waiting costs and dispatching costs of operators over all possible demand distributions within the ambiguity set. Subsequently, an expansion that allows for flexible formations of MVs assigned to each trip at each stop is proposed, and this results in more customized operational plans driven by the passenger demand. To improve the computational efficiency of realistic problems, we design a customized integer L-shaped method to exactly solve the models, which incorporates a class of valid equalities to further speed up the computation. The effectiveness of the proposed approaches in reducing the costs for both passengers and operators compared with the practical fixed-capacity operations is verified by real-world case studies based on the operating data of Beijing Bus Line 468. Furthermore, the superiority of the distributionally robust optimization method in comparison to the stochastic programming and the robust optimization approaches is demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
19秒前
阿巴阿巴发布了新的文献求助10
21秒前
在水一方应助elmqs采纳,获得10
30秒前
Alina完成签到 ,获得积分10
37秒前
59秒前
青牛完成签到 ,获得积分10
1分钟前
阿巴阿巴发布了新的文献求助10
1分钟前
1分钟前
1分钟前
elmqs发布了新的文献求助10
1分钟前
1分钟前
quanjiazhi发布了新的文献求助10
1分钟前
elmqs完成签到,获得积分10
1分钟前
1分钟前
阿巴阿巴发布了新的文献求助10
1分钟前
lt0217发布了新的文献求助10
2分钟前
lt0217发布了新的文献求助10
2分钟前
3分钟前
3分钟前
呆呆的猕猴桃完成签到 ,获得积分10
3分钟前
3分钟前
阿巴阿巴发布了新的文献求助10
3分钟前
昵称完成签到,获得积分10
3分钟前
3分钟前
LJ_2完成签到 ,获得积分10
3分钟前
Mr.R发布了新的文献求助10
3分钟前
Mr.R完成签到,获得积分10
3分钟前
404NotFOUND应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
阿巴阿巴完成签到,获得积分10
4分钟前
田様应助铭铭采纳,获得10
4分钟前
4分钟前
阿巴阿巴发布了新的文献求助10
4分钟前
bkagyin应助程翠丝采纳,获得10
4分钟前
方白秋完成签到,获得积分10
4分钟前
wx1完成签到 ,获得积分0
5分钟前
5分钟前
5分钟前
伍佰发布了新的文献求助10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059642
关于积分的说明 9067319
捐赠科研通 2750142
什么是DOI,文献DOI怎么找? 1509047
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896