The effect of Cu doping on the piezoelectric properties of ZnO systems: First-principles calculations

纤锌矿晶体结构 压电 离子键合 材料科学 Atom(片上系统) 共价键 电荷密度 兴奋剂 结晶学 电荷(物理) 凝聚态物理 压电系数 有效核电荷 离子 物理 化学 量子力学 复合材料 有机化学 计算机科学 冶金 嵌入式系统
作者
Lin Liu,Wen‐Tao Yu,Yujie Zhao,Wensheng Zhu,Jing Li,Lingkang Wu,Hao Wang
出处
期刊:International Journal of Modern Physics B [World Scientific]
卷期号:38 (24)
标识
DOI:10.1142/s0217979224503247
摘要

First-principles calculations are performed, revealing a significant enhancement of the piezoelectric properties of wurtzite Zn[Formula: see text]O[Formula: see text] upon the incorporation of a single Cu atom. Research has demonstrated that the piezoelectric constant [Formula: see text] reaches its maximum value at a doping concentration of 1.4% for Cu atoms. The lattice parameters a and c of Zn[Formula: see text]O[Formula: see text] are decreased and the piezoelectric strain coefficient [Formula: see text] is increased by replacing one Cu atom in Zn[Formula: see text]O[Formula: see text]. It is found that elastic softening is the primary factor responsible for the increase of [Formula: see text] in Zn[Formula: see text]Cu 1 O[Formula: see text]. By differential charge density analysis, it is found that the covalency between Cu–O bonds is lower than that of Zn–O bonds, and the covalent bonding characteristics are weakened. Bader charge analysis shows that the charge of Cu is higher than that of Zn, indicating a more significant ionic bonding feature than that of Zn. Thus, a weaker covalent and stronger ionic bond are considered to play an essential role in promoting elastic softening for ZnO, which eventually promotes a significant enhancement in piezoelectric properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
Ava应助侦察兵采纳,获得10
2秒前
2秒前
rookie_b0发布了新的文献求助10
2秒前
邓代容完成签到 ,获得积分10
3秒前
可爱的函函应助南逸然采纳,获得10
3秒前
HiK完成签到,获得积分10
3秒前
gaos发布了新的文献求助10
3秒前
4秒前
外向从灵发布了新的文献求助10
4秒前
4秒前
萌道完成签到,获得积分20
5秒前
thanhmanhp完成签到,获得积分10
5秒前
doudou发布了新的文献求助10
5秒前
5秒前
有风完成签到,获得积分10
5秒前
tk完成签到 ,获得积分10
6秒前
6秒前
大模型应助蜡笔采纳,获得30
6秒前
liu发布了新的文献求助10
6秒前
完美世界应助咳咳采纳,获得10
7秒前
7秒前
哒哒完成签到,获得积分10
7秒前
李健春完成签到 ,获得积分10
7秒前
ding应助小文采纳,获得10
7秒前
7秒前
8秒前
99完成签到,获得积分10
8秒前
隐形曼青应助迅速的夏兰采纳,获得20
8秒前
Muse完成签到 ,获得积分10
9秒前
圈圈发布了新的文献求助10
9秒前
打打应助时尚的蚂蚁采纳,获得10
10秒前
贾文斌完成签到,获得积分10
10秒前
chinning发布了新的文献求助10
10秒前
完美世界应助wangn采纳,获得10
11秒前
Mid完成签到,获得积分20
11秒前
共享精神应助Morgenstern_ZH采纳,获得10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759