Development and validation of a non-invasive model for predicting significant fibrosis based on patients with nonalcoholic fatty liver disease in the United States

非酒精性脂肪肝 医学 接收机工作特性 逻辑回归 内科学 纤维化 队列 多元统计 脂肪肝 统计 肿瘤科 胃肠病学 疾病 数学
作者
Yufeng Guo,Bo Shen,Yanli Xue,Ying Liu
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fendo.2023.1207365
摘要

Background Liver fibrosis is closely related to abnormal liver function and liver cancer. Accurate noninvasive assessment of liver fibrosis is of great significance for preventing disease progression and treatment decisions. The purpose of this study was to develop and validate a non-invasive predictive model for the asses`sment of significant fibrosis in patients with non-alcoholic fatty liver disease. Methods Information on all participants for 2017-2018 was extracted from the NHANES database. The eligible patients with significant fibrosis (n=123) and non-significant fibrosis (n=898) were selected to form the original dataset. Variable selection was performed using least absolute shrinkage and selection operator (Lasso) regression, and multivariate logistic regression analysis was used to develop a prediction model. The utility of the model is assessed in terms of its discrimination, calibration and clinical usability. Bootstrap-resampling internal validation was used to measure the accuracy of the prediction model. Results This study established a new model consisting of 9 common clinical indicators and developed an online calculator to show the model. Compared with the previously proposed liver fibrosis scoring system, this model showed the best discrimination and predictive performance in the training cohort (0.812,95%CI 0.769-0.855) and the validation cohort (0.805,95%CI 0.762-0.847), with the highest area under curve. Specificity(0.823), sensitivity(0.699), positive likelihood ratio(3.949) and negative likelihood ratio(0.366) were equally excellent. The calibration plot of the predicted probability and the actual occurrence probability of significant fibrosis shows excellent consistency, indicating that the model calibration is outstanding. Combined with decision curve analysis, this model has a great benefit in the range of 0.1-0.8 threshold probability, and has a good application value for the diagnosis of clinical significant fibrosis. Conclusion This study proposes a new non-invasive diagnostic model that combines clinical indicators to provide an accurate and convenient individualized diagnosis of significant fibrosis in patients with non-alcoholic fatty liver disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏士博发布了新的文献求助10
刚刚
田所浩二完成签到 ,获得积分10
1秒前
2秒前
华仔应助zhdan采纳,获得10
2秒前
ghhhn完成签到,获得积分10
2秒前
4秒前
皮皮怪完成签到,获得积分10
4秒前
4秒前
FIB菜狗发布了新的文献求助10
4秒前
火柴two完成签到,获得积分10
4秒前
旺旺发布了新的文献求助10
5秒前
共享精神应助奋斗的秋珊采纳,获得10
5秒前
5秒前
ICBC完成签到 ,获得积分10
5秒前
连夜雪完成签到,获得积分10
5秒前
小蘑菇应助smjjs采纳,获得20
5秒前
天天快乐应助困困小馒头采纳,获得10
5秒前
俭朴尔白发布了新的文献求助30
5秒前
licheng完成签到,获得积分10
5秒前
Owen应助疯狂的洋葱采纳,获得30
6秒前
王通发布了新的文献求助10
6秒前
6秒前
静_静完成签到 ,获得积分10
6秒前
6秒前
二哈发布了新的文献求助10
7秒前
Mikecheng完成签到,获得积分10
7秒前
7秒前
隐形曼青应助巴旦木采纳,获得10
8秒前
8秒前
Silvia完成签到,获得积分10
8秒前
bkagyin应助迅速路人采纳,获得10
8秒前
科目三应助寒塘渡鹤影采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
Kaede发布了新的文献求助10
9秒前
9秒前
李卓完成签到,获得积分10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444