Development and validation of a non-invasive model for predicting significant fibrosis based on patients with nonalcoholic fatty liver disease in the United States

非酒精性脂肪肝 医学 接收机工作特性 逻辑回归 内科学 纤维化 队列 多元统计 脂肪肝 统计 肿瘤科 胃肠病学 疾病 数学
作者
Yufeng Guo,Bo Shen,Yanli Xue,Ying Liu
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fendo.2023.1207365
摘要

Background Liver fibrosis is closely related to abnormal liver function and liver cancer. Accurate noninvasive assessment of liver fibrosis is of great significance for preventing disease progression and treatment decisions. The purpose of this study was to develop and validate a non-invasive predictive model for the asses`sment of significant fibrosis in patients with non-alcoholic fatty liver disease. Methods Information on all participants for 2017-2018 was extracted from the NHANES database. The eligible patients with significant fibrosis (n=123) and non-significant fibrosis (n=898) were selected to form the original dataset. Variable selection was performed using least absolute shrinkage and selection operator (Lasso) regression, and multivariate logistic regression analysis was used to develop a prediction model. The utility of the model is assessed in terms of its discrimination, calibration and clinical usability. Bootstrap-resampling internal validation was used to measure the accuracy of the prediction model. Results This study established a new model consisting of 9 common clinical indicators and developed an online calculator to show the model. Compared with the previously proposed liver fibrosis scoring system, this model showed the best discrimination and predictive performance in the training cohort (0.812,95%CI 0.769-0.855) and the validation cohort (0.805,95%CI 0.762-0.847), with the highest area under curve. Specificity(0.823), sensitivity(0.699), positive likelihood ratio(3.949) and negative likelihood ratio(0.366) were equally excellent. The calibration plot of the predicted probability and the actual occurrence probability of significant fibrosis shows excellent consistency, indicating that the model calibration is outstanding. Combined with decision curve analysis, this model has a great benefit in the range of 0.1-0.8 threshold probability, and has a good application value for the diagnosis of clinical significant fibrosis. Conclusion This study proposes a new non-invasive diagnostic model that combines clinical indicators to provide an accurate and convenient individualized diagnosis of significant fibrosis in patients with non-alcoholic fatty liver disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后的穆完成签到 ,获得积分10
2秒前
2秒前
Kry4taloL完成签到 ,获得积分10
4秒前
5秒前
8秒前
hanyy完成签到,获得积分10
8秒前
9秒前
9秒前
MY完成签到,获得积分10
12秒前
迷人素完成签到 ,获得积分10
14秒前
猫滩儿发布了新的文献求助10
14秒前
15秒前
21秒前
347完成签到,获得积分10
21秒前
瑞仔完成签到,获得积分10
22秒前
Singularity应助于广喜采纳,获得10
22秒前
24秒前
anyang完成签到,获得积分10
24秒前
baby完成签到,获得积分10
25秒前
25秒前
合适的乐乐完成签到,获得积分10
26秒前
28秒前
多莫多莫莫完成签到 ,获得积分10
28秒前
xuan发布了新的文献求助10
29秒前
机灵的芷波完成签到 ,获得积分10
30秒前
orange9发布了新的文献求助10
30秒前
开开心心的开心应助xuan采纳,获得10
33秒前
开开心心的开心应助xuan采纳,获得10
33秒前
xx发布了新的文献求助10
35秒前
36秒前
37秒前
神明发布了新的文献求助10
41秒前
BINBIN完成签到 ,获得积分10
41秒前
虎虎虎完成签到,获得积分10
41秒前
yangshujuan发布了新的文献求助10
41秒前
daniel完成签到 ,获得积分10
43秒前
xx完成签到,获得积分10
43秒前
44秒前
cjh发布了新的文献求助10
45秒前
Huanghong关注了科研通微信公众号
48秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122894
求助须知:如何正确求助?哪些是违规求助? 2773252
关于积分的说明 7717119
捐赠科研通 2428750
什么是DOI,文献DOI怎么找? 1290033
科研通“疑难数据库(出版商)”最低求助积分说明 621678
版权声明 600188