Development and validation of a non-invasive model for predicting significant fibrosis based on patients with nonalcoholic fatty liver disease in the United States

非酒精性脂肪肝 医学 接收机工作特性 逻辑回归 内科学 纤维化 队列 多元统计 脂肪肝 统计 肿瘤科 胃肠病学 疾病 数学
作者
Yufeng Guo,Bo Shen,Yanli Xue,Ying Liu
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fendo.2023.1207365
摘要

Background Liver fibrosis is closely related to abnormal liver function and liver cancer. Accurate noninvasive assessment of liver fibrosis is of great significance for preventing disease progression and treatment decisions. The purpose of this study was to develop and validate a non-invasive predictive model for the asses`sment of significant fibrosis in patients with non-alcoholic fatty liver disease. Methods Information on all participants for 2017-2018 was extracted from the NHANES database. The eligible patients with significant fibrosis (n=123) and non-significant fibrosis (n=898) were selected to form the original dataset. Variable selection was performed using least absolute shrinkage and selection operator (Lasso) regression, and multivariate logistic regression analysis was used to develop a prediction model. The utility of the model is assessed in terms of its discrimination, calibration and clinical usability. Bootstrap-resampling internal validation was used to measure the accuracy of the prediction model. Results This study established a new model consisting of 9 common clinical indicators and developed an online calculator to show the model. Compared with the previously proposed liver fibrosis scoring system, this model showed the best discrimination and predictive performance in the training cohort (0.812,95%CI 0.769-0.855) and the validation cohort (0.805,95%CI 0.762-0.847), with the highest area under curve. Specificity(0.823), sensitivity(0.699), positive likelihood ratio(3.949) and negative likelihood ratio(0.366) were equally excellent. The calibration plot of the predicted probability and the actual occurrence probability of significant fibrosis shows excellent consistency, indicating that the model calibration is outstanding. Combined with decision curve analysis, this model has a great benefit in the range of 0.1-0.8 threshold probability, and has a good application value for the diagnosis of clinical significant fibrosis. Conclusion This study proposes a new non-invasive diagnostic model that combines clinical indicators to provide an accurate and convenient individualized diagnosis of significant fibrosis in patients with non-alcoholic fatty liver disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vv关注了科研通微信公众号
1秒前
LLL完成签到,获得积分10
1秒前
yanghaiyu发布了新的文献求助10
4秒前
贪玩飞柏完成签到,获得积分10
4秒前
陈立佳完成签到,获得积分10
4秒前
陈先生完成签到,获得积分10
7秒前
晨曦完成签到,获得积分10
9秒前
yanghaiyu完成签到,获得积分10
13秒前
科目三应助老默采纳,获得10
13秒前
14秒前
15秒前
贪玩飞柏发布了新的文献求助10
15秒前
16秒前
秦小荷完成签到,获得积分10
17秒前
利华尔完成签到,获得积分10
17秒前
18秒前
老默完成签到,获得积分10
18秒前
秦小荷发布了新的文献求助10
20秒前
小蘑菇应助无算浮白采纳,获得10
22秒前
打打应助尔尔采纳,获得10
23秒前
爱吃冻梨发布了新的文献求助10
25秒前
26秒前
27秒前
yi完成签到,获得积分20
28秒前
30秒前
SciGPT应助秦小荷采纳,获得10
31秒前
啦啦完成签到,获得积分10
32秒前
踏实机器猫完成签到 ,获得积分10
32秒前
充电宝应助孟相浩采纳,获得20
32秒前
华仔应助独特的绯采纳,获得10
32秒前
怕黑书翠发布了新的文献求助30
32秒前
顺利汉堡完成签到 ,获得积分10
33秒前
33秒前
萨芬完成签到,获得积分10
34秒前
34秒前
黑猫小苍完成签到,获得积分10
34秒前
35秒前
集力申完成签到,获得积分10
35秒前
你泽完成签到,获得积分20
35秒前
眼睛大盼兰完成签到 ,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298978
求助须知:如何正确求助?哪些是违规求助? 4447324
关于积分的说明 13842385
捐赠科研通 4332903
什么是DOI,文献DOI怎么找? 2378395
邀请新用户注册赠送积分活动 1373694
关于科研通互助平台的介绍 1339263