Development and validation of a non-invasive model for predicting significant fibrosis based on patients with nonalcoholic fatty liver disease in the United States

非酒精性脂肪肝 医学 接收机工作特性 逻辑回归 内科学 纤维化 队列 多元统计 脂肪肝 统计 肿瘤科 胃肠病学 疾病 数学
作者
Yufeng Guo,Bo Shen,Yanli Xue,Ying Liu
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fendo.2023.1207365
摘要

Background Liver fibrosis is closely related to abnormal liver function and liver cancer. Accurate noninvasive assessment of liver fibrosis is of great significance for preventing disease progression and treatment decisions. The purpose of this study was to develop and validate a non-invasive predictive model for the asses`sment of significant fibrosis in patients with non-alcoholic fatty liver disease. Methods Information on all participants for 2017-2018 was extracted from the NHANES database. The eligible patients with significant fibrosis (n=123) and non-significant fibrosis (n=898) were selected to form the original dataset. Variable selection was performed using least absolute shrinkage and selection operator (Lasso) regression, and multivariate logistic regression analysis was used to develop a prediction model. The utility of the model is assessed in terms of its discrimination, calibration and clinical usability. Bootstrap-resampling internal validation was used to measure the accuracy of the prediction model. Results This study established a new model consisting of 9 common clinical indicators and developed an online calculator to show the model. Compared with the previously proposed liver fibrosis scoring system, this model showed the best discrimination and predictive performance in the training cohort (0.812,95%CI 0.769-0.855) and the validation cohort (0.805,95%CI 0.762-0.847), with the highest area under curve. Specificity(0.823), sensitivity(0.699), positive likelihood ratio(3.949) and negative likelihood ratio(0.366) were equally excellent. The calibration plot of the predicted probability and the actual occurrence probability of significant fibrosis shows excellent consistency, indicating that the model calibration is outstanding. Combined with decision curve analysis, this model has a great benefit in the range of 0.1-0.8 threshold probability, and has a good application value for the diagnosis of clinical significant fibrosis. Conclusion This study proposes a new non-invasive diagnostic model that combines clinical indicators to provide an accurate and convenient individualized diagnosis of significant fibrosis in patients with non-alcoholic fatty liver disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
answer完成签到,获得积分10
刚刚
刚刚
猫猫发布了新的文献求助10
刚刚
tingting9完成签到,获得积分10
刚刚
方便面条子完成签到 ,获得积分10
1秒前
shilong.yang发布了新的文献求助20
1秒前
Orange应助规方矩圆采纳,获得10
1秒前
1秒前
赘婿应助娄某采纳,获得10
1秒前
BowieHuang应助11231采纳,获得10
2秒前
2秒前
ze发布了新的文献求助10
2秒前
2秒前
2秒前
善学以致用应助热爱生活采纳,获得10
2秒前
奋斗瑶发布了新的文献求助10
3秒前
优雅翎完成签到,获得积分10
3秒前
打打应助大胆天抒采纳,获得10
3秒前
皓月繁星发布了新的文献求助10
4秒前
英俊的铭应助caicai采纳,获得10
4秒前
Puffkten完成签到,获得积分10
4秒前
Exist完成签到 ,获得积分10
4秒前
Chenzhs完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
清风发布了新的文献求助10
5秒前
沉吟完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
adinike发布了新的文献求助10
6秒前
water完成签到,获得积分10
6秒前
领导范儿应助Cymatics采纳,获得10
6秒前
张熙媛发布了新的文献求助10
6秒前
ding应助liuyong采纳,获得10
7秒前
7秒前
dadaup完成签到 ,获得积分10
7秒前
木棉发布了新的文献求助10
7秒前
177ycd完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577