Development and validation of a non-invasive model for predicting significant fibrosis based on patients with nonalcoholic fatty liver disease in the United States

非酒精性脂肪肝 医学 接收机工作特性 逻辑回归 内科学 纤维化 队列 多元统计 脂肪肝 统计 肿瘤科 胃肠病学 疾病 数学
作者
Yufeng Guo,Bo Shen,Yanli Xue,Ying Liu
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fendo.2023.1207365
摘要

Background Liver fibrosis is closely related to abnormal liver function and liver cancer. Accurate noninvasive assessment of liver fibrosis is of great significance for preventing disease progression and treatment decisions. The purpose of this study was to develop and validate a non-invasive predictive model for the asses`sment of significant fibrosis in patients with non-alcoholic fatty liver disease. Methods Information on all participants for 2017-2018 was extracted from the NHANES database. The eligible patients with significant fibrosis (n=123) and non-significant fibrosis (n=898) were selected to form the original dataset. Variable selection was performed using least absolute shrinkage and selection operator (Lasso) regression, and multivariate logistic regression analysis was used to develop a prediction model. The utility of the model is assessed in terms of its discrimination, calibration and clinical usability. Bootstrap-resampling internal validation was used to measure the accuracy of the prediction model. Results This study established a new model consisting of 9 common clinical indicators and developed an online calculator to show the model. Compared with the previously proposed liver fibrosis scoring system, this model showed the best discrimination and predictive performance in the training cohort (0.812,95%CI 0.769-0.855) and the validation cohort (0.805,95%CI 0.762-0.847), with the highest area under curve. Specificity(0.823), sensitivity(0.699), positive likelihood ratio(3.949) and negative likelihood ratio(0.366) were equally excellent. The calibration plot of the predicted probability and the actual occurrence probability of significant fibrosis shows excellent consistency, indicating that the model calibration is outstanding. Combined with decision curve analysis, this model has a great benefit in the range of 0.1-0.8 threshold probability, and has a good application value for the diagnosis of clinical significant fibrosis. Conclusion This study proposes a new non-invasive diagnostic model that combines clinical indicators to provide an accurate and convenient individualized diagnosis of significant fibrosis in patients with non-alcoholic fatty liver disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
wzm完成签到,获得积分10
1秒前
Wqhao发布了新的文献求助10
1秒前
spinor发布了新的文献求助10
1秒前
单薄雪巧完成签到,获得积分10
1秒前
Azure完成签到,获得积分10
1秒前
afeifei完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
Khr1stINK发布了新的文献求助10
2秒前
鱼与发布了新的文献求助20
2秒前
2秒前
2秒前
搜集达人应助sunrise采纳,获得10
2秒前
3秒前
4秒前
4秒前
文文君发布了新的文献求助10
4秒前
无情的幻香完成签到,获得积分10
4秒前
4秒前
CCC发布了新的文献求助10
4秒前
4秒前
4秒前
随风发布了新的文献求助30
5秒前
SciGPT应助路纹婷采纳,获得10
5秒前
5秒前
于玕完成签到,获得积分10
5秒前
冷艳的寻冬完成签到,获得积分10
5秒前
PYR发布了新的文献求助10
6秒前
6秒前
acuter发布了新的文献求助10
6秒前
伶俐的以菱完成签到 ,获得积分10
6秒前
6秒前
michael发布了新的文献求助10
6秒前
五花肉完成签到,获得积分10
7秒前
7秒前
8秒前
ice完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210