Development and validation of a non-invasive model for predicting significant fibrosis based on patients with nonalcoholic fatty liver disease in the United States

非酒精性脂肪肝 医学 接收机工作特性 逻辑回归 内科学 纤维化 队列 多元统计 脂肪肝 统计 肿瘤科 胃肠病学 疾病 数学
作者
Yufeng Guo,Bo Shen,Yanli Xue,Ying Liu
出处
期刊:Frontiers in Endocrinology [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fendo.2023.1207365
摘要

Background Liver fibrosis is closely related to abnormal liver function and liver cancer. Accurate noninvasive assessment of liver fibrosis is of great significance for preventing disease progression and treatment decisions. The purpose of this study was to develop and validate a non-invasive predictive model for the asses`sment of significant fibrosis in patients with non-alcoholic fatty liver disease. Methods Information on all participants for 2017-2018 was extracted from the NHANES database. The eligible patients with significant fibrosis (n=123) and non-significant fibrosis (n=898) were selected to form the original dataset. Variable selection was performed using least absolute shrinkage and selection operator (Lasso) regression, and multivariate logistic regression analysis was used to develop a prediction model. The utility of the model is assessed in terms of its discrimination, calibration and clinical usability. Bootstrap-resampling internal validation was used to measure the accuracy of the prediction model. Results This study established a new model consisting of 9 common clinical indicators and developed an online calculator to show the model. Compared with the previously proposed liver fibrosis scoring system, this model showed the best discrimination and predictive performance in the training cohort (0.812,95%CI 0.769-0.855) and the validation cohort (0.805,95%CI 0.762-0.847), with the highest area under curve. Specificity(0.823), sensitivity(0.699), positive likelihood ratio(3.949) and negative likelihood ratio(0.366) were equally excellent. The calibration plot of the predicted probability and the actual occurrence probability of significant fibrosis shows excellent consistency, indicating that the model calibration is outstanding. Combined with decision curve analysis, this model has a great benefit in the range of 0.1-0.8 threshold probability, and has a good application value for the diagnosis of clinical significant fibrosis. Conclusion This study proposes a new non-invasive diagnostic model that combines clinical indicators to provide an accurate and convenient individualized diagnosis of significant fibrosis in patients with non-alcoholic fatty liver disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助Ztx采纳,获得10
1秒前
小林野发布了新的文献求助10
2秒前
怕黑的凌柏完成签到,获得积分10
2秒前
虚影发布了新的文献求助10
2秒前
2秒前
3秒前
CROWN完成签到,获得积分10
3秒前
3秒前
田様应助piers采纳,获得10
3秒前
3秒前
隐形曼青应助我爱科研采纳,获得30
3秒前
bbb完成签到,获得积分10
4秒前
lcjynwe完成签到,获得积分10
4秒前
4秒前
小二郎应助愉快的楷瑞采纳,获得10
5秒前
科研通AI6应助小绵羊采纳,获得10
5秒前
5秒前
5秒前
Ava应助868采纳,获得10
5秒前
一叶舟完成签到 ,获得积分10
6秒前
xiaozhou完成签到,获得积分10
6秒前
6秒前
受伤的依霜完成签到,获得积分20
6秒前
小王同学完成签到,获得积分10
6秒前
6秒前
lyreruin完成签到,获得积分10
6秒前
虚影完成签到,获得积分10
7秒前
林祥胜完成签到,获得积分10
7秒前
敏感代云完成签到,获得积分10
7秒前
7秒前
科研通AI5应助bbb采纳,获得10
7秒前
7秒前
瑾风阳完成签到,获得积分10
8秒前
琪哒发布了新的文献求助10
8秒前
225455完成签到,获得积分10
8秒前
8秒前
沉默发布了新的文献求助10
8秒前
爆米花应助英勇的面包采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426