A three-layer decomposition method based on structural texture perception for fusion of CT and MRI images

图像融合 增采样 人工智能 计算机科学 融合 计算机视觉 冗余(工程) 模式识别(心理学) 图像纹理 纹理(宇宙学) 图像处理 图像(数学) 哲学 语言学 操作系统
作者
Rui Zhu,Yong Lü,Xiaoli Zhang,Xiongfei Li,Yuncong Feng
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:88: 105518-105518
标识
DOI:10.1016/j.bspc.2023.105518
摘要

The fusion of computed tomography (CT) images and magnetic resonance imaging (MRI) images has made essential contribution to clinical diagnosis because of its ability of complementary visual information enhancement and redundancy elimination. However, some methods that involve upsampling and downsampling operations may lose information during image processing, which affects the fusion results. In this paper, a medical image fusion algorithm based on structural texture perception is proposed. The proposed method demonstrates enhanced performance in preserving both detailed texture information and energy information of source images. First, the source image is decomposed into a signal strength layer, a base layer, and a texture layer based on the proposed three-layer decomposition framework. Then, the signal strength layers are fused using a saliency detection method based on iterative least squares. The texture layer is fused using the principle of spatial frequency maximization. For the fusion of the base layer, a non-linear function is designed to calculate the fusion weights. Finally, the final fusion result is obtained through image reconstruction. The proposed algorithm is compared with nine state-of-the-art fusion algorithms to verify its superiority. Experimental results show that the proposed method can effectively preserve the intensity information of CT images and the detailed texture of MRI images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kingmin应助毛慢慢采纳,获得10
刚刚
完美世界应助顺利鱼采纳,获得10
1秒前
搜集达人应助招财不肥采纳,获得10
2秒前
sweetbearm应助李秋静采纳,获得10
2秒前
Michael_li完成签到,获得积分10
2秒前
whs完成签到,获得积分10
4秒前
科研通AI5应助xlj采纳,获得10
5秒前
再干一杯发布了新的文献求助10
5秒前
6秒前
满意的天完成签到 ,获得积分10
6秒前
luoshiwen完成签到,获得积分10
6秒前
落寞的觅柔完成签到,获得积分10
8秒前
9秒前
LUNWENREQUEST发布了新的文献求助10
9秒前
10秒前
11秒前
123cxj完成签到,获得积分10
14秒前
CO2发布了新的文献求助10
14秒前
summer发布了新的文献求助10
14秒前
15秒前
Xx.发布了新的文献求助10
15秒前
大大关注了科研通微信公众号
15秒前
稚祎完成签到 ,获得积分10
15秒前
15秒前
CodeCraft应助东东采纳,获得10
16秒前
17秒前
叽里咕噜完成签到 ,获得积分10
18秒前
田様应助zccc采纳,获得10
19秒前
隐形的雁完成签到,获得积分10
19秒前
追寻的秋玲完成签到,获得积分10
20秒前
李繁蕊发布了新的文献求助10
20秒前
21秒前
舒心的紫雪完成签到 ,获得积分10
22秒前
22秒前
24秒前
24秒前
25秒前
不上课不行完成签到,获得积分10
26秒前
再干一杯完成签到,获得积分10
26秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808