控制理论(社会学)
弹道
内环
前馈
控制器(灌溉)
最优控制
计算机科学
姿态控制
轨迹优化
李雅普诺夫函数
跟踪误差
线性化
反馈线性化
控制系统
控制工程
工程类
数学
控制(管理)
非线性系统
数学优化
生物
人工智能
物理
电气工程
天文
量子力学
农学
作者
Rongsheng Xia,Chunlei Bu,Xiaohui Yan,Tongle Zhou
摘要
Abstract In this article, a finite‐horizon optimal trajectory control strategy is developed for near space hypersonic vehicle (NSHV) longitudinal model with multi‐constraints including external disturbance, system modeling error, and input saturation. The whole control process has two parts: inner‐loop attitude control and outer‐loop trajectory control. First, the feedback linearization method is applied to design a tracking controller for outer‐loop system, and reference signals for inner‐loop attitude control can be obtained using Newton iteration method. Second, for the inner‐loop attitude system with multi‐constraints, a finite‐horizon optimal tracking control scheme consists of feedforward control input and adaptive dynamic programming based optimal feedback controller is designed. In this way, not only the adverse effects of above multi‐constraints are eliminated, but also the optimally tracking performances are guaranteed. Finally, the Lyapunov analysis method is utilized to ensure the stability of the entire closed‐loop control system, and simulation tests with respect to NSHV longitudinal trajectory tracking are supplied to verify the availability of the proposed strategy.
科研通智能强力驱动
Strongly Powered by AbleSci AI