SMTF: Sparse transformer with multiscale contextual fusion for medical image segmentation

计算机科学 地点 人工智能 分割 卷积神经网络 编码器 模式识别(心理学) 变压器 图像分割 语言学 量子力学 操作系统 物理 哲学 电压
作者
Xichu Zhang,Xiaozhi Zhang,Lijun Ouyang,Chuanbo Qin,Xiao Lin,Dongping Xiong
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:87: 105458-105458 被引量:7
标识
DOI:10.1016/j.bspc.2023.105458
摘要

Medical image segmentation aims at recognizing the object of interest from surrounding tissues and structures, which is essential for the reliable diagnosis and morphological analysis of specific lesions. Automatic medical image segmentation has been significantly boosted by deep Convolutional Neural Networks (CNNs). However, CNNs usually fail to model long-range interactions due to the intrinsic locality of convolutional operations, which limits the segmentation performance. Recently, Transformer has been successfully applied in various computer visions, which leverages the self-attention mechanism for modelling long-range interactions to capture global information. Nevertheless, self-attention suffers from lacks of spatial locality and efficient computation. To address these issues, in this work, we develop a new sparse medical Transformer (SMTF) with multiscale contextual fusion for medical image segmentation. The proposed model combines convolutional operations and attention mechanisms to form a U-shaped framework to capture both local and global information. Specifically, to reduce the computational cost of traditional Transformer, we design a novel sparse attention module to construct Transformer layers by spherical Locality Sensitive Hashing method. The sparse attention partitions the feature space into different attention buckets, and the attention calculation is conducted only in the individual bucket. The designed sparse Transformer layer further incorporates a bottleneck block to construct the encoder in SMTF. It is worth noting that the proposed sparse Transformer can also aggregate the global feature information in early stages, which enables the model to learn more local and global information by incorporating CNNs at lower layers. Furthermore, we introduce a deep supervision strategy to guide the model to fuse multiscale feature information. It further enables the SMTF to effectively propagate feature information across layers to preserve more input spatial information and mitigate information attenuation. Benefiting from these, it can achieve better segmentation performance while being more robust and efficient. The proposed SMTF is evaluated on multiple medical image segmentation datasets and a clinical nasopharyngeal carcinoma dataset. Extensive experiments have demonstrated its superiority on both qualitative and quantitative evaluations. Code and models are available at https://github.com/qmx717/sparse-attention.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美丽的兔子完成签到,获得积分10
1秒前
曙光森林完成签到,获得积分10
1秒前
1秒前
Derik完成签到,获得积分10
1秒前
布溜完成签到,获得积分10
2秒前
2秒前
1eader1完成签到,获得积分10
2秒前
2秒前
BaiX完成签到,获得积分10
2秒前
孙福禄应助victory_liu采纳,获得10
2秒前
2秒前
cecilycen完成签到,获得积分10
3秒前
beikou完成签到,获得积分20
3秒前
琦琦完成签到,获得积分10
3秒前
guojing1321完成签到,获得积分10
3秒前
Derik发布了新的文献求助10
3秒前
狂风阿来完成签到 ,获得积分10
4秒前
whitedawn完成签到 ,获得积分10
4秒前
郭正霄完成签到,获得积分10
4秒前
4秒前
linciko完成签到,获得积分10
4秒前
火星上的雨柏完成签到 ,获得积分10
5秒前
大方芾发布了新的文献求助10
5秒前
东木应助江屿采纳,获得20
5秒前
苦雨完成签到,获得积分10
5秒前
领导范儿应助我迷了鹿采纳,获得10
6秒前
guojing1321发布了新的文献求助10
6秒前
啦啦啦完成签到,获得积分10
6秒前
TuT完成签到,获得积分10
6秒前
爱听歌的夏烟完成签到,获得积分10
7秒前
英姑应助yyl采纳,获得10
7秒前
deadman发布了新的文献求助10
7秒前
布溜发布了新的文献求助10
7秒前
8秒前
8秒前
hahage完成签到,获得积分10
8秒前
沐风完成签到,获得积分20
8秒前
YJ完成签到,获得积分10
9秒前
9秒前
selena完成签到,获得积分20
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582