SMTF: Sparse transformer with multiscale contextual fusion for medical image segmentation

计算机科学 地点 人工智能 分割 卷积神经网络 编码器 模式识别(心理学) 变压器 图像分割 语言学 量子力学 操作系统 物理 哲学 电压
作者
Xichu Zhang,Xiaozhi Zhang,Lijun Ouyang,Chuanbo Qin,Xiao Lin,Dongping Xiong
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105458-105458 被引量:7
标识
DOI:10.1016/j.bspc.2023.105458
摘要

Medical image segmentation aims at recognizing the object of interest from surrounding tissues and structures, which is essential for the reliable diagnosis and morphological analysis of specific lesions. Automatic medical image segmentation has been significantly boosted by deep Convolutional Neural Networks (CNNs). However, CNNs usually fail to model long-range interactions due to the intrinsic locality of convolutional operations, which limits the segmentation performance. Recently, Transformer has been successfully applied in various computer visions, which leverages the self-attention mechanism for modelling long-range interactions to capture global information. Nevertheless, self-attention suffers from lacks of spatial locality and efficient computation. To address these issues, in this work, we develop a new sparse medical Transformer (SMTF) with multiscale contextual fusion for medical image segmentation. The proposed model combines convolutional operations and attention mechanisms to form a U-shaped framework to capture both local and global information. Specifically, to reduce the computational cost of traditional Transformer, we design a novel sparse attention module to construct Transformer layers by spherical Locality Sensitive Hashing method. The sparse attention partitions the feature space into different attention buckets, and the attention calculation is conducted only in the individual bucket. The designed sparse Transformer layer further incorporates a bottleneck block to construct the encoder in SMTF. It is worth noting that the proposed sparse Transformer can also aggregate the global feature information in early stages, which enables the model to learn more local and global information by incorporating CNNs at lower layers. Furthermore, we introduce a deep supervision strategy to guide the model to fuse multiscale feature information. It further enables the SMTF to effectively propagate feature information across layers to preserve more input spatial information and mitigate information attenuation. Benefiting from these, it can achieve better segmentation performance while being more robust and efficient. The proposed SMTF is evaluated on multiple medical image segmentation datasets and a clinical nasopharyngeal carcinoma dataset. Extensive experiments have demonstrated its superiority on both qualitative and quantitative evaluations. Code and models are available at https://github.com/qmx717/sparse-attention.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑脸完成签到,获得积分10
1秒前
如梦如画完成签到,获得积分10
1秒前
1秒前
风过客发布了新的文献求助10
1秒前
充电宝应助淡然珍采纳,获得10
1秒前
苏苏发布了新的文献求助10
2秒前
落寞砖家发布了新的文献求助10
2秒前
3秒前
菲尔普斯完成签到,获得积分20
3秒前
3秒前
白方明发布了新的文献求助10
4秒前
1117完成签到 ,获得积分10
4秒前
科研通AI2S应助噗噗个噗采纳,获得10
6秒前
6秒前
扶溪筠发布了新的文献求助10
7秒前
7秒前
清爽笑白完成签到 ,获得积分10
7秒前
LBY发布了新的文献求助10
7秒前
7秒前
悦耳怜南发布了新的文献求助10
8秒前
故意的傲玉应助摇摆摇摆采纳,获得30
8秒前
8秒前
领导范儿应助木歌采纳,获得10
9秒前
Hello应助白方明采纳,获得10
9秒前
10秒前
HITvagary完成签到,获得积分10
10秒前
10秒前
科研通AI5应助滕擎采纳,获得10
10秒前
nani026发布了新的文献求助10
11秒前
Jasper应助王敬顺采纳,获得10
11秒前
louis发布了新的文献求助10
11秒前
12秒前
12秒前
Orange应助Dylan采纳,获得10
12秒前
tzy关注了科研通微信公众号
12秒前
领导范儿应助帅到被人砍采纳,获得10
13秒前
13秒前
13秒前
DKW发布了新的文献求助10
13秒前
jingwen发布了新的文献求助10
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490333
求助须知:如何正确求助?哪些是违规求助? 3077289
关于积分的说明 9148413
捐赠科研通 2769525
什么是DOI,文献DOI怎么找? 1519761
邀请新用户注册赠送积分活动 704287
科研通“疑难数据库(出版商)”最低求助积分说明 702113