YOLO-O2E: A Variant YOLO Model for Anomalous Rail Fastening Detection

紧固件 推论 计算机科学 相似性(几何) 组分(热力学) 领域(数学) 目标检测 人工智能 数据挖掘 工程类 模式识别(心理学) 图像(数学) 数学 结构工程 物理 纯数学 热力学
作者
Zhuhong Chu,Jianxun Zhang,Chengdong Wang,Changhui Yang
出处
期刊:Computers, materials & continua 卷期号:80 (1): 1143-1161 被引量:1
标识
DOI:10.32604/cmc.2024.052269
摘要

Rail fasteners are a crucial component of the railway transportation safety system. These fasteners, distinguished by their high length-to-width ratio, frequently encounter elevated failure rates, necessitating manual inspection and maintenance. Manual inspection not only consumes time but also poses the risk of potential oversights. With the advancement of deep learning technology in rail fasteners, challenges such as the complex background of rail fasteners and the similarity in their states are addressed. We have proposed an efficient and high-precision rail fastener detection algorithm, named YOLO-O2E (you only look once-O2E). Firstly, we propose the EFOV (Enhanced Field of View) structure, aiming to adjust the effective receptive field size of convolutional kernels to enhance insensitivity to small spatial variations. Additionally, The OD_MP (ODConv and MP_2) and EMA (Efficient Multi-Scale Attention) modules mentioned in the algorithm can acquire a wider spectrum of contextual information, enhancing the model's ability to recognize and locate objectives. Additionally, we collected and prepared the GKA dataset, sourced from real train tracks. Through testing on the GKA dataset and the publicly available NUE-DET dataset, our method outperforms general-purpose object detection algorithms. On the GKA dataset, our model achieved a mAP@0.5 value of 97.6% and a mAP@0.5:0.95 value of 83.9%, demonstrating excellent inference speed. YOLO-O2E is an algorithm for detecting anomalies in railway fasteners that is applicable in practical industrial settings, addressing the industry gap in rail fastener detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
小冯完成签到,获得积分10
2秒前
霸气绿草完成签到,获得积分10
2秒前
李健应助fqf采纳,获得10
3秒前
科研通AI5应助wyling采纳,获得10
4秒前
知更鸟发布了新的文献求助10
4秒前
5秒前
serier发布了新的文献求助10
7秒前
8秒前
安安的小板栗完成签到,获得积分10
9秒前
牧木完成签到,获得积分10
10秒前
领导范儿应助小陈爱科研采纳,获得10
11秒前
11秒前
13秒前
xiao发布了新的文献求助10
14秒前
jiang完成签到,获得积分10
14秒前
温暖的沛凝完成签到 ,获得积分10
15秒前
霸气绿草发布了新的文献求助10
16秒前
16秒前
zzzzzz应助机智的青烟采纳,获得30
18秒前
18秒前
糊糊发布了新的文献求助30
18秒前
xini完成签到,获得积分20
19秒前
20秒前
科研通AI6应助cugwzr采纳,获得10
21秒前
21秒前
韩爽完成签到,获得积分10
21秒前
gu123发布了新的文献求助10
21秒前
充电宝应助林小采纳,获得10
21秒前
21秒前
24秒前
25秒前
研友_VZG7GZ应助xiaolei001采纳,获得10
26秒前
慎ming发布了新的文献求助10
26秒前
26秒前
李爱国应助3VIPER3采纳,获得10
27秒前
量子星尘发布了新的文献求助10
27秒前
jiajia发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941338
求助须知:如何正确求助?哪些是违规求助? 4207362
关于积分的说明 13077414
捐赠科研通 3986186
什么是DOI,文献DOI怎么找? 2182512
邀请新用户注册赠送积分活动 1198073
关于科研通互助平台的介绍 1110368