DCCAT: Dual-Coordinate Cross-Attention Transformer for thrombus segmentation on coronary OCT

血栓 光学相干层析成像 人工智能 计算机科学 分割 判别式 稳健性(进化) 计算机视觉 模式识别(心理学) 医学 放射科 心脏病学 生物化学 化学 基因
作者
Miao Chu,Giovanni Luigi De Maria,R H Dai,Stefano Benenati,Wei Yu,Jiaxin Zhong,Rafail A. Kotronias,Jason Walsh,Stefano Andreaggi,Vittorio Zuccarelli,Jason Chai,Keith M. Channon,Adrian Banning,Shengxian Tu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103265-103265 被引量:1
标识
DOI:10.1016/j.media.2024.103265
摘要

Acute coronary syndromes (ACS) are one of the leading causes of mortality worldwide, with atherosclerotic plaque rupture and subsequent thrombus formation as the main underlying substrate. Thrombus burden evaluation is important for tailoring treatment therapy and predicting prognosis. Coronary optical coherence tomography (OCT) enables in-vivo visualization of thrombus that cannot otherwise be achieved by other image modalities. However, automatic quantification of thrombus on OCT has not been implemented. The main challenges are due to the variation in location, size and irregularities of thrombus in addition to the small data set. In this paper, we propose a novel dual-coordinate cross-attention transformer network, termed DCCAT, to overcome the above challenges and achieve the first automatic segmentation of thrombus on OCT. Imaging features from both Cartesian and polar coordinates are encoded and fused based on long-range correspondence via multi-head cross-attention mechanism. The dual-coordinate cross-attention block is hierarchically stacked amid convolutional layers at multiple levels, allowing comprehensive feature enhancement. The model was developed based on 5,649 OCT frames from 339 patients and tested using independent external OCT data from 548 frames of 52 patients. DCCAT achieved Dice similarity score (DSC) of 0.706 in segmenting thrombus, which is significantly higher than the CNN-based (0.656) and Transformer-based (0.584) models. We prove that the additional input of polar image not only leverages discriminative features from another coordinate but also improves model robustness for geometrical transformation.Experiment results show that DCCAT achieves competitive performance with only 10% of the total data, highlighting its data efficiency. The proposed dual-coordinate cross-attention design can be easily integrated into other developed Transformer models to boost performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lylyzhl发布了新的文献求助10
刚刚
orang完成签到,获得积分10
刚刚
小二郎应助火星上涫采纳,获得10
1秒前
李健应助BLock采纳,获得10
1秒前
十年完成签到 ,获得积分10
1秒前
大叉烧完成签到,获得积分10
1秒前
Wonder发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
lyl完成签到,获得积分10
2秒前
2秒前
ww发布了新的文献求助10
3秒前
慕青应助MF采纳,获得10
3秒前
李子潭应助柚子采纳,获得20
3秒前
现代的可乐关注了科研通微信公众号
3秒前
coco完成签到,获得积分10
3秒前
烟花应助happiness采纳,获得10
4秒前
龙海完成签到 ,获得积分10
4秒前
坚强白凝发布了新的文献求助10
4秒前
5秒前
zhaozhao完成签到,获得积分20
5秒前
Wendy发布了新的文献求助10
5秒前
5秒前
Ava应助超级的千青采纳,获得10
5秒前
wwjj发布了新的文献求助10
5秒前
jasonhuang完成签到,获得积分10
6秒前
6秒前
DZQ发布了新的文献求助10
6秒前
6秒前
轻松沛菡完成签到,获得积分10
6秒前
kitty完成签到,获得积分10
7秒前
无底洞发布了新的文献求助10
7秒前
wwwwwxm发布了新的文献求助50
8秒前
8秒前
小仲马完成签到,获得积分20
8秒前
香蕉觅云应助lylyzhl采纳,获得10
8秒前
arizaki7应助rorocris采纳,获得10
9秒前
9秒前
打打应助馒头采纳,获得10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337972
求助须知:如何正确求助?哪些是违规求助? 4475164
关于积分的说明 13927295
捐赠科研通 4370189
什么是DOI,文献DOI怎么找? 2401255
邀请新用户注册赠送积分活动 1394279
关于科研通互助平台的介绍 1366148