Improved yolov5 algorithm combined with depth camera and embedded system for blind indoor visual assistance

计算机科学 计算机视觉 人工智能 计算机图形学(图像) 算法
作者
Shouxin Zhang,Yanyan Wang,Shengzhe Shi,Qingqing Wang,Chun Wang,Sheng Liu
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-74416-2
摘要

To assist the visually impaired in their daily lives and solve the problems associated with poor portability, high hardware costs, and environmental susceptibility of indoor object-finding aids for the visually impaired, an improved YOLOv5 algorithm was proposed. It was combined with a RealSense D435i depth camera and a voice system to realise an indoor object-finding device for the visually impaired using a Raspberry Pi 4 B device as its core. The algorithm uses GhostNet instead of the YOLOv5s backbone network to reduce the number of parameters and computation of the model, incorporates an attention mechanism (coordinate attention), and replaces the YOLOv5 neck network with a bidirectional feature pyramid network to enhance feature extraction. Compared to the YOLOv5 model, the model size was reduced by 42.4%, number of parameters was reduced by 47.9%, and recall rate increased by 1.2% with the same precision. This study applied the improved YOLOv5 algorithm to an indoor object-finding device for the visually impaired, where the searched object was input by voice, and the RealSense D435i was used to acquire RGB and depth images to realize the detection and ranging of the object, broadcast the specific distance of the target object by voice, and assist the visually impaired in finding the object.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dxftx完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
冷静新烟发布了新的文献求助10
3秒前
dxftx发布了新的文献求助10
4秒前
Hello应助niiiiii采纳,获得10
4秒前
赘婿应助橘子柚子采纳,获得10
4秒前
4秒前
糊涂涂完成签到,获得积分10
4秒前
zhuangzhu发布了新的文献求助10
5秒前
5秒前
5秒前
7秒前
7秒前
打打应助Aurora采纳,获得10
8秒前
8秒前
充电宝应助longer采纳,获得10
8秒前
9秒前
11完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助30
10秒前
10秒前
活泼的寒云完成签到,获得积分10
10秒前
zpp发布了新的文献求助30
11秒前
朴素沛山完成签到 ,获得积分10
11秒前
酷波er应助潇洒的辣条采纳,获得10
11秒前
11秒前
12秒前
李萍萍发布了新的文献求助10
12秒前
彭于晏应助小新采纳,获得10
13秒前
11发布了新的文献求助10
13秒前
Moonquake完成签到,获得积分10
13秒前
研友_VZG7GZ应助哒哒哒采纳,获得10
13秒前
PPLP发布了新的文献求助10
14秒前
Robin发布了新的文献求助10
14秒前
Go发布了新的文献求助10
15秒前
小二郎应助着急的猴采纳,获得10
16秒前
云飞扬发布了新的文献求助10
16秒前
tsuki发布了新的文献求助10
16秒前
Ava应助少吃顿饭并不难采纳,获得10
17秒前
臭屁大王发布了新的文献求助20
18秒前
甜橘完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720875
求助须知:如何正确求助?哪些是违规求助? 5262673
关于积分的说明 15292448
捐赠科研通 4870116
什么是DOI,文献DOI怎么找? 2615251
邀请新用户注册赠送积分活动 1565182
关于科研通互助平台的介绍 1522256