Construction and validation of a prognostic model of angiogenesis-related genes in multiple myeloma

外科肿瘤学 多发性骨髓瘤 血管生成 医学 肿瘤科 计算生物学 基因 内科学 生物信息学 遗传学 生物
作者
Rui Hu,Fengyu Chen,Xueting Yu,Zengzheng Li,Yujin Li,Shuai Feng,Jianqiong Liu,Huiyuan Li,Chengmin Shen,Xuezhong Gu,Zhixiang Lu
出处
期刊:BMC Cancer [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-13024-9
摘要

Angiogenesis is associated with tumour growth, infiltration, and metastasis. This study aimed to detect the mechanisms of angiogenesis-related genes (ARGs) in multiple myeloma (MM) and to construct a new prognostic model. MM research foundation (MMRF)-CoMMpass cohort, GSE47552, GSE57317, and ARGs were sourced from public databases. Differentially expressed genes (DEGs) in the tumour and control cohorts in GSE47552 were determined through differential expression analysis and were enriched with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Weighted gene coexpression network analysis (WGCNA) was applied to derive modules linked to the ARG scores and obtain module genes in GSE47552. Differentially expressed ARGs (DE-ARGs) were selected for subsequent analyses by overlapping DEGs and module genes. Furthermore, prognostic genes were selected using univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses. Depending on the prognostic genes, a risk model was constructed, and risk scores were determined. Moreover, MM samples from MMRF-CoMMpass were sorted into high- and low-risk teams on account of the median risk score. Additionally, correlations among clinical characteristics, gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), immune analysis, immunotherapy predictions and the mRNA‒miRNA‒lncRNA network were carried out. A total of 898 DEGs, 211 module genes, 24 DE-ARGs and three prognostic genes (AKAP12, C11orf80 and EMP1) were selected for this study. Enrichment analysis revealed that the DEGs were related to 86 GO terms, such as 'cytoplasmic translation', and 41 KEGG pathways, such as 'small cell lung cancer'. A prognostic gene-based risk model was created in MMRF-CoMMpass and confirmed with the GSE57317 dataset. Moreover, a nomogram was established on the basis of independent prognostic factors that have proven to be good predictors. In addition, the immune cell infiltration results suggested that memory B cells were enriched in the high-risk group and that immature B cells were enriched in the low-risk group. Finally, the mRNA‒miRNA‒lncRNA network demonstrated that hsa-miR-508-5p was tightly associated with EMP1 and AKAP12. RT‒qPCR was used to validate the expression of the genes associated with prognosis. A new prognostic model of MM associated with ARGs was created and validated, providing a new perspective for exploring the connection between ARGs and MM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠檬味咸鱼精完成签到,获得积分10
刚刚
丘比特应助peaunt采纳,获得10
刚刚
1秒前
自信谷冬发布了新的文献求助10
1秒前
1秒前
1秒前
4秒前
尤寄风发布了新的文献求助10
5秒前
汉堡包应助欢呼乐珍采纳,获得10
5秒前
蒲云海发布了新的文献求助10
6秒前
哇塞发布了新的文献求助10
6秒前
大模型应助奈何采纳,获得10
6秒前
枯木逢春完成签到,获得积分20
6秒前
万能图书馆应助Kiwi采纳,获得10
6秒前
Baiker完成签到,获得积分10
7秒前
yyyyy完成签到,获得积分10
7秒前
7秒前
dsfsdf完成签到,获得积分10
7秒前
欢喜火发布了新的文献求助40
7秒前
脑洞疼应助tutouganlan采纳,获得30
7秒前
8秒前
小船发布了新的文献求助10
9秒前
2028847955完成签到,获得积分10
9秒前
jing111发布了新的文献求助10
9秒前
灰色铅笔完成签到,获得积分10
10秒前
顾矜应助lin采纳,获得10
10秒前
11秒前
学术地瓜发布了新的文献求助10
13秒前
13秒前
14秒前
冰斓完成签到,获得积分10
14秒前
科研小白完成签到,获得积分10
15秒前
思源应助wisdom采纳,获得10
16秒前
17秒前
轻松的芾发布了新的文献求助10
17秒前
可爱的函函应助火火吴采纳,获得10
18秒前
18秒前
欢呼乐珍发布了新的文献求助10
18秒前
枯木逢春发布了新的文献求助10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512699
求助须知:如何正确求助?哪些是违规求助? 3095095
关于积分的说明 9226003
捐赠科研通 2789913
什么是DOI,文献DOI怎么找? 1530915
邀请新用户注册赠送积分活动 711242
科研通“疑难数据库(出版商)”最低求助积分说明 706669