石油工程
胍
压裂液
化石燃料
环境科学
材料科学
地质学
化学工程
化学
工程类
有机化学
作者
Huimei Wu,Xiaopeng Zhai,Yinyan Li,Jian Li,Zhonghui Li,Wentie Sun
标识
DOI:10.1038/s41598-024-70976-5
摘要
The development of deep high-temperature oil and gas reservoirs gives rise to a rise in reservoir temperature along with the depth of the oil reservoir, thereby imposing higher requirements on the heat resistance of fracturing fluid. Guar gum fracturing fluid has difficulty tolerating temperatures exceeding 160 °C, thereby demanding the development of corresponding cross-linking agents, temperature stabilizers, and other additives to enhance the thermal stability of the fracturing system. Considering the distinctive characteristics of deep and ultra-deep reservoirs, such as extreme burial depth (exceeding 6000 m), ultra-high temperature (higher than 160 °C), and high fracturing pressure, an experimental modification of a guar gum fracturing fluid system was carried out, specifically tailored for ultra-high temperatures. The experiment identified and selected individual agents for ultra-high temperature fracturing fluids, including crosslinking agents, thermal stabilizers, flowback aids, and clay inhibitors. Through rigorous experimentation, these key agents for an ultra-high temperature fracturing fluid system have been successfully developed, including the optimal thickener GBA1-2, crosslinking agent BA1-1, anti-swelling agent FB-1, and gel breaker TS-1. The evaluation of diverse additive dosages has facilitated the development of an optimal guar fracturing fluid system, which exhibits outstanding high-temperature resistance while minimizing damage and friction. The outcomes of our experiments indicate that even after subjecting our ultra-high temperature fracturing fluid to 2 h of shearing at 170 s
科研通智能强力驱动
Strongly Powered by AbleSci AI