Genomic prediction method based on channel spatial attention mechanism

机制(生物学) 计算机科学 频道(广播) 计算生物学 计算机网络 生物 物理 量子力学
作者
Chaokun Yan,Lixuan Chai,Huimin Luo,Zhou Zhang,Jianlin Wang,Ge Zhang
标识
DOI:10.1117/12.3044742
摘要

Single Nucleotide Polymorphism (SNP) is a common form of genetic variation, and genomic prediction is an emerging technique that utilizes SNP information to predict phenotypes in animals and plants. It is gradually being applied in animal and plant breeding as well as human disease risk assessment. Traditional statistical learning methods can only focus on linear interactions between the genome and phenotypes. Machine learning methods and deep learning methods have become popular due to their ability to recognize non-linear interactions between SNPs. However, existing deep learning methods often only learn short-distance interactions between SNPs and overlook long-distance interactions. Therefore, we propose a genomic prediction method called DCNNCSA (DualCNN Channel Spatial Attention) based on a channel spatial attention mechanism. DCNNCSA first uses a dual-branch convolutional neural network to extract features in the channel and spatial dimensions. Then, it utilizes a channel spatial attention mechanism to identify long-distance interactions between SNPs, thereby improving the accuracy of genomic prediction. Experimental evaluations are conducted on datasets including wheat 2000 and wheat 599 datasets. The results demonstrate that DCNNCSA outperforms rrBLUP, LASSO, XGBoost, Random Forest, DeepGS, and DLGWAS methods in terms of prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仄言发布了新的文献求助10
刚刚
香蕉觅云应助csl采纳,获得10
刚刚
duohongrui完成签到 ,获得积分10
刚刚
1秒前
活力的友绿完成签到 ,获得积分10
1秒前
enen完成签到,获得积分10
2秒前
2秒前
PGL完成签到,获得积分10
2秒前
MH哥哥完成签到,获得积分10
3秒前
3秒前
3秒前
嘉嘉Joey完成签到,获得积分10
3秒前
3秒前
南海神尼完成签到,获得积分10
3秒前
Ryan完成签到,获得积分10
4秒前
三毛变相发布了新的文献求助10
4秒前
康琦琦发布了新的文献求助50
4秒前
领导范儿应助dxc采纳,获得10
5秒前
5秒前
5秒前
6秒前
jellorio完成签到,获得积分20
6秒前
tutuee完成签到,获得积分10
7秒前
顾矜应助zsqqqqq采纳,获得10
7秒前
有一颗卤蛋完成签到,获得积分10
7秒前
聪明曼凡发布了新的文献求助10
7秒前
坚强亦丝应助Yucsh书慧123采纳,获得10
7秒前
sssssssss发布了新的文献求助10
8秒前
李健应助仄言采纳,获得10
8秒前
8秒前
活力元珊完成签到 ,获得积分10
8秒前
青呀青呀乔完成签到,获得积分10
9秒前
jellorio发布了新的文献求助10
9秒前
王老吉马克完成签到,获得积分10
9秒前
9秒前
小安发布了新的文献求助10
9秒前
10秒前
芝士芝士发布了新的文献求助20
10秒前
喋喋的潇洒日常完成签到,获得积分10
11秒前
Maisie完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
Interest Rate Modeling. Volume 1: Foundations and Vanilla Models 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539584
求助须知:如何正确求助?哪些是违规求助? 3117278
关于积分的说明 9329702
捐赠科研通 2814967
什么是DOI,文献DOI怎么找? 1547365
邀请新用户注册赠送积分活动 720905
科研通“疑难数据库(出版商)”最低求助积分说明 712351