A nonlinear structural pulse-like seismic response prediction method based on pulse-like identification and decomposition learning

分解 脉搏(音乐) 非线性系统 计算机科学 脉冲整形 鉴定(生物学) 非线性系统辨识 生物系统 系统标识 光学 数据挖掘 物理 化学 有机化学 度量(数据仓库) 激光器 植物 量子力学 电信 生物 探测器
作者
Bo Liu,Qiang Xu,Jianyun Chen,Yin Wang,Jiansheng Chen,Tianran Zhang
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:33 (10): 105008-105008 被引量:1
标识
DOI:10.1088/1361-665x/ad742d
摘要

Abstract Accurate and fast prediction of structural response under seismic action is important for structural performance assessment, however, existing deep learning-based prediction methods do not consider the effect of pulse characteristics of near-fault pulse-like ground motions on structural response. To address the above issues, a new method based on wavelet decomposition and attention mechanism-enhanced decomposition learning, i.e. WD–AttDL, is proposed in this study to predict structural response under pulse-like ground motions. This method innovatively combines a WD-based velocity pulse-identification method with decomposition learning, where decomposed pulses and high-frequency features are used as inputs to the neural-network model, thus simplifying the identification of pulse features for the model. The decomposition learning model integrates several types of neural network components such as convolutional neural network feature extraction submodule, long short-term memory neural network temporal learning submodule and self-attention mechanism submodule. In order to verify the accuracy and validity of the proposed methodology, three sets of case studies were carried out, including elasto-plastic time-history analyses of planar reinforced concrete (RC) frame structures, a three-dimensional RC frame structure, and two types of masonry seismic isolation structures. Compared with existing structural seismic response models, WD–AttDL synergistically integrates the advantages of different modules and thus offers a higher prediction accuracy. In particular, it reduces the peak error of the predicted response, which is important for the evaluation of structural performance. In addition, WD–AttDL has a great potential for application in fast vulnerability and reliability analysis of pulse-like earthquakes in nonlinear structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pgh.hh发布了新的文献求助10
2秒前
456发布了新的文献求助20
2秒前
冷LL完成签到,获得积分10
2秒前
delll完成签到 ,获得积分10
3秒前
大力的迎松完成签到,获得积分20
4秒前
LuoZuoZhi发布了新的文献求助10
4秒前
ljc完成签到,获得积分10
5秒前
7秒前
wlj完成签到 ,获得积分10
9秒前
含糊的皮卡丘完成签到,获得积分10
9秒前
9秒前
ZHX发布了新的文献求助10
10秒前
10秒前
ljc发布了新的文献求助10
11秒前
丁昆完成签到,获得积分10
11秒前
miao发布了新的文献求助10
13秒前
13秒前
shuangma完成签到,获得积分10
14秒前
14秒前
FashionBoy应助LuoZuoZhi采纳,获得10
14秒前
乐乐应助tunerling采纳,获得10
14秒前
15秒前
幽默的小之完成签到,获得积分10
15秒前
热心芹菜完成签到,获得积分20
15秒前
czzlancer完成签到,获得积分10
16秒前
slby完成签到 ,获得积分10
17秒前
TORGO完成签到,获得积分10
17秒前
Sunny完成签到 ,获得积分10
17秒前
asymm发布了新的文献求助10
20秒前
大大大完成签到,获得积分10
20秒前
20秒前
22秒前
wbr完成签到,获得积分10
23秒前
23秒前
斯文败类应助lyyyy采纳,获得10
24秒前
24秒前
乐观忆灵应助miao采纳,获得20
25秒前
25秒前
26秒前
鹿lu完成签到,获得积分20
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461317
求助须知:如何正确求助?哪些是违规求助? 3055029
关于积分的说明 9046143
捐赠科研通 2744961
什么是DOI,文献DOI怎么找? 1505775
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695264