A nonlinear structural pulse-like seismic response prediction method based on pulse-like identification and decomposition learning

分解 脉搏(音乐) 非线性系统 计算机科学 脉冲整形 鉴定(生物学) 非线性系统辨识 生物系统 系统标识 光学 数据挖掘 物理 化学 电信 量子力学 植物 有机化学 探测器 激光器 度量(数据仓库) 生物
作者
Bo Liu,Qiang Xu,Jianyun Chen,Yin Wang,Jiansheng Chen,Tianran Zhang
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:33 (10): 105008-105008 被引量:1
标识
DOI:10.1088/1361-665x/ad742d
摘要

Abstract Accurate and fast prediction of structural response under seismic action is important for structural performance assessment, however, existing deep learning-based prediction methods do not consider the effect of pulse characteristics of near-fault pulse-like ground motions on structural response. To address the above issues, a new method based on wavelet decomposition and attention mechanism-enhanced decomposition learning, i.e. WD–AttDL, is proposed in this study to predict structural response under pulse-like ground motions. This method innovatively combines a WD-based velocity pulse-identification method with decomposition learning, where decomposed pulses and high-frequency features are used as inputs to the neural-network model, thus simplifying the identification of pulse features for the model. The decomposition learning model integrates several types of neural network components such as convolutional neural network feature extraction submodule, long short-term memory neural network temporal learning submodule and self-attention mechanism submodule. In order to verify the accuracy and validity of the proposed methodology, three sets of case studies were carried out, including elasto-plastic time-history analyses of planar reinforced concrete (RC) frame structures, a three-dimensional RC frame structure, and two types of masonry seismic isolation structures. Compared with existing structural seismic response models, WD–AttDL synergistically integrates the advantages of different modules and thus offers a higher prediction accuracy. In particular, it reduces the peak error of the predicted response, which is important for the evaluation of structural performance. In addition, WD–AttDL has a great potential for application in fast vulnerability and reliability analysis of pulse-like earthquakes in nonlinear structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小古发布了新的文献求助10
1秒前
nalanfu完成签到,获得积分10
1秒前
2秒前
鱼鱼完成签到 ,获得积分10
3秒前
可爱新波完成签到,获得积分10
3秒前
CCsci发布了新的文献求助10
3秒前
westen2509完成签到 ,获得积分10
4秒前
玛卡巴卡发布了新的文献求助10
4秒前
zuolan发布了新的文献求助10
5秒前
6秒前
所所应助132132zl采纳,获得10
7秒前
Xavier发布了新的文献求助80
7秒前
柒月流火发布了新的文献求助10
7秒前
8秒前
8秒前
科研通AI6应助昏睡的绿海采纳,获得10
8秒前
8秒前
YQT发布了新的文献求助10
9秒前
szp完成签到 ,获得积分20
9秒前
西西发布了新的文献求助10
12秒前
爱lx完成签到,获得积分10
13秒前
善学以致用应助hhhhhw采纳,获得10
13秒前
浮游应助shirly采纳,获得10
15秒前
orixero应助柒月流火采纳,获得10
15秒前
16秒前
Jackylee应助zuolan采纳,获得10
16秒前
沙砾完成签到,获得积分10
16秒前
健忘的蜡烛完成签到,获得积分10
17秒前
fang完成签到 ,获得积分10
18秒前
SciGPT应助Mr鹿采纳,获得10
19秒前
21秒前
21秒前
guard发布了新的文献求助10
22秒前
之组长了完成签到 ,获得积分10
23秒前
玛卡巴卡发布了新的文献求助10
26秒前
26秒前
27秒前
Kimin完成签到,获得积分10
28秒前
走着完成签到,获得积分10
28秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5243324
求助须知:如何正确求助?哪些是违规求助? 4409688
关于积分的说明 13726113
捐赠科研通 4279143
什么是DOI,文献DOI怎么找? 2347946
邀请新用户注册赠送积分活动 1345283
关于科研通互助平台的介绍 1303352