A nonlinear structural pulse-like seismic response prediction method based on pulse-like identification and decomposition learning

分解 脉搏(音乐) 非线性系统 计算机科学 脉冲整形 鉴定(生物学) 非线性系统辨识 生物系统 系统标识 光学 数据挖掘 物理 化学 有机化学 度量(数据仓库) 激光器 植物 量子力学 电信 生物 探测器
作者
Bo Liu,Qiang Xu,Jianyun Chen,Yin Wang,Jiansheng Chen,Tianran Zhang
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:33 (10): 105008-105008 被引量:1
标识
DOI:10.1088/1361-665x/ad742d
摘要

Abstract Accurate and fast prediction of structural response under seismic action is important for structural performance assessment, however, existing deep learning-based prediction methods do not consider the effect of pulse characteristics of near-fault pulse-like ground motions on structural response. To address the above issues, a new method based on wavelet decomposition and attention mechanism-enhanced decomposition learning, i.e. WD–AttDL, is proposed in this study to predict structural response under pulse-like ground motions. This method innovatively combines a WD-based velocity pulse-identification method with decomposition learning, where decomposed pulses and high-frequency features are used as inputs to the neural-network model, thus simplifying the identification of pulse features for the model. The decomposition learning model integrates several types of neural network components such as convolutional neural network feature extraction submodule, long short-term memory neural network temporal learning submodule and self-attention mechanism submodule. In order to verify the accuracy and validity of the proposed methodology, three sets of case studies were carried out, including elasto-plastic time-history analyses of planar reinforced concrete (RC) frame structures, a three-dimensional RC frame structure, and two types of masonry seismic isolation structures. Compared with existing structural seismic response models, WD–AttDL synergistically integrates the advantages of different modules and thus offers a higher prediction accuracy. In particular, it reduces the peak error of the predicted response, which is important for the evaluation of structural performance. In addition, WD–AttDL has a great potential for application in fast vulnerability and reliability analysis of pulse-like earthquakes in nonlinear structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyanzhang完成签到 ,获得积分10
刚刚
KK123456完成签到,获得积分10
1秒前
2秒前
FashionBoy应助chang采纳,获得10
3秒前
3秒前
ZHANG完成签到,获得积分10
3秒前
阁主完成签到,获得积分10
3秒前
不得完成签到,获得积分10
3秒前
3秒前
4秒前
共享精神应助独步旋碟采纳,获得10
4秒前
4秒前
过氧化氢发布了新的文献求助20
4秒前
喜喜发布了新的文献求助10
5秒前
彭于晏应助苹果采纳,获得10
6秒前
6秒前
7秒前
7秒前
答辩发布了新的文献求助10
9秒前
9秒前
9秒前
大模型应助阁主采纳,获得10
9秒前
10秒前
11秒前
11秒前
popcorn完成签到,获得积分10
11秒前
11秒前
11秒前
twotwomi完成签到,获得积分10
11秒前
ly完成签到,获得积分20
12秒前
ChenYifei完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
Lucas应助来日方长采纳,获得10
13秒前
chang发布了新的文献求助10
13秒前
小巫发布了新的文献求助10
14秒前
周娅敏发布了新的文献求助10
15秒前
华仔应助答辩采纳,获得10
15秒前
caixiayin发布了新的文献求助10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650