Prediction of clinical prognosis and drug sensitivity in hepatocellular carcinoma through the combination of multiple cell death pathways

坏死性下垂 转录组 上睑下垂 程序性细胞死亡 肝细胞癌 索拉非尼 自噬 生物 癌症研究 医学 生物信息学 肿瘤科 细胞凋亡 基因 基因表达 生物化学
作者
QingKun Chen,ChenGuang Zhang,Tao Meng,Ke Yang,QiLi Hu,Zhong Sheng Tong,Xiaogang Wang
出处
期刊:Cell Biology International [Wiley]
标识
DOI:10.1002/cbin.12235
摘要

Abstract Hepatocellular carcinoma (HCC) is the sixth most common malignant tumor, highlighting a significant need for reliable predictive models to assess clinical prognosis, disease progression, and drug sensitivity. Recent studies have highlighted the critical role of various programmed cell death pathways, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, entotic cell death, NETotic cell death, parthanatos, lysosome‐dependent cell death, autophagy‐dependent cell death, alkaliptosis, oxeiptosis, and disulfidptosis, in tumor development. Therefore, by investigating these pathways, we aimed to develop a predictive model for HCC prognosis and drug sensitivity. We analyzed transcriptome, single‐cell transcriptome, genomic, and clinical information using data from the TCGA‐LIHC, GSE14520, GSE45436, and GSE166635 datasets. Machine learning algorithms were used to establish a cell death index (CDI) with seven gene signatures, which was validated across three independent datasets, showing that high CDI correlates with poorer prognosis. Unsupervised clustering revealed three molecular subtypes of HCC with distinct biological processes. Furthermore, a nomogram integrating CDI and clinical information demonstrated good predictive performance. CDI was associated with immune checkpoint genes and tumor microenvironment components using single‐cell transcriptome analysis. Drug sensitivity analysis indicated that patients with high CDI may be resistant to oxaliplatin and cisplatin but sensitive to axitinib and sorafenib. In summary, our model offers a precise prediction of clinical outcomes and drug sensitivity for patients with HCC, providing valuable insights for personalized treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶亦云发布了新的文献求助10
1秒前
kelly发布了新的文献求助30
1秒前
cocolu举报susu求助涉嫌违规
2秒前
TARGET完成签到,获得积分10
2秒前
Neuro_dan完成签到,获得积分10
3秒前
3秒前
4秒前
JamesPei应助激昂的秀发采纳,获得10
5秒前
飞速get完成签到 ,获得积分10
5秒前
小羊肖恩发布了新的文献求助10
8秒前
lulu完成签到,获得积分10
9秒前
知性的绮兰完成签到,获得积分10
9秒前
研友_VZG7GZ应助ShuyueXue采纳,获得10
10秒前
干饭大大大大大王完成签到,获得积分10
10秒前
12秒前
cocolu应助biliobili采纳,获得10
14秒前
15秒前
田様应助一修采纳,获得10
15秒前
16秒前
16秒前
干净的人达完成签到 ,获得积分10
17秒前
TARGET关注了科研通微信公众号
17秒前
always发布了新的文献求助10
17秒前
xiaoyu完成签到,获得积分10
18秒前
18秒前
zzz发布了新的文献求助10
19秒前
19秒前
20秒前
秦琨发布了新的文献求助10
20秒前
JamesPei应助板凳采纳,获得10
21秒前
21秒前
小易发布了新的文献求助10
21秒前
ShuyueXue完成签到,获得积分10
22秒前
22秒前
不将就1345发布了新的文献求助10
22秒前
Qiao应助何哈哈采纳,获得10
22秒前
23秒前
gent发布了新的文献求助20
23秒前
xwwwww发布了新的文献求助10
23秒前
科目三应助zzz采纳,获得10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299776
求助须知:如何正确求助?哪些是违规求助? 2934644
关于积分的说明 8470036
捐赠科研通 2608208
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574