已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Simplify to the Limit! Embedding-less Graph Collaborative Filtering for Recommender Systems

推荐系统 协同过滤 极限(数学) 计算机科学 嵌入 图形 理论计算机科学 情报检索 人工智能 数学 数学分析
作者
Yi Zhang,Yiwen Zhang,Lei Sang,Victor S. Sheng
出处
期刊:ACM Transactions on Information Systems
标识
DOI:10.1145/3701230
摘要

The tremendous positive driving effect of Graph Convolutional Network (GCN) and Graph Contrastive Learning (GCL) for recommender systems has become a consensus. GCN encoders are extensively used in recommendation models for capturing high-order connectivities between users and items, whereas GCL accelerates the training of recommendation tasks by adding extra supervision signals from contrastive objectives. However, little attention has been paid on corresponding theories that are truly tailored to recommendation tasks. From the technical perspective, Collaborative Filtering (CF) is seen as an important factor in recommender systems. It is applied to measure user-user, item-item, and user-item similarities rather than to achieve better clustering or node classification results. Besides, heuristic-based data augmentation may not be hold true in the field of recommender systems as it requires additional training costs and introduces noises that will corrupt the interaction graph structure and the semantic information of nodes. To tackle these limitations, we propose a novel Embedding-less Graph Collaborative Filtering (EGCF) for recommendation, which is tailor-made for the problem mentioned for CF and further simplifies existing solutions. Structurally, it consists of two parts: embedding-less GCN and embedding-less GCL. The former improves user-item affinity by streamlining user-type embeddings and carrying out iterative graph convolution. And the latter utilizes three-type contrastive objectives to directly measure the alignment and the uniformity of users, items, and interaction pairs, respectively, avoiding any type of data augmentation or multi-view construction. Even though EGCF has been extremely streamlined, extensive experimental results on three classical datasets demonstrate the effectiveness of EGCF in terms of recommendation accuracy and training efficiency. The code and used datasets are released at https://github.com/BlueGhostYi/ID-GRec.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英姑应助chenkui采纳,获得10
1秒前
2秒前
5秒前
勤劳初雪完成签到 ,获得积分10
6秒前
科研通AI5应助Honghao采纳,获得10
6秒前
烟花应助swordlee采纳,获得10
7秒前
斯文败类应助michaeleh采纳,获得10
10秒前
lele7458发布了新的文献求助10
11秒前
科研通AI5应助ys采纳,获得10
11秒前
seven完成签到,获得积分10
12秒前
leon发布了新的文献求助10
13秒前
xxr完成签到,获得积分10
13秒前
大模型应助爱笑的绮露采纳,获得10
17秒前
kk完成签到,获得积分10
18秒前
皮代谷完成签到,获得积分10
18秒前
18秒前
Zeeki完成签到 ,获得积分10
22秒前
leon发布了新的文献求助10
22秒前
等待紫菱完成签到,获得积分10
24秒前
26秒前
酷波er应助屈灿采纳,获得10
26秒前
kk发布了新的文献求助10
26秒前
27秒前
29秒前
深情安青应助crookshanks88采纳,获得10
29秒前
zz发布了新的文献求助10
32秒前
ZORO发布了新的文献求助10
32秒前
34秒前
Woyixin发布了新的文献求助30
34秒前
Akim应助Lg采纳,获得10
34秒前
36秒前
等待紫菱发布了新的文献求助10
36秒前
zz完成签到,获得积分20
38秒前
布同完成签到,获得积分10
40秒前
村上春树的摩的完成签到 ,获得积分10
41秒前
程新亮完成签到 ,获得积分10
41秒前
大天使完成签到 ,获得积分10
41秒前
屈灿发布了新的文献求助10
42秒前
章鱼完成签到,获得积分10
44秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555581
求助须知:如何正确求助?哪些是违规求助? 3131303
关于积分的说明 9390512
捐赠科研通 2830894
什么是DOI,文献DOI怎么找? 1556204
邀请新用户注册赠送积分活动 726475
科研通“疑难数据库(出版商)”最低求助积分说明 715803