P02.05.A COMPREHENSIVE ANALYSIS OF TUMOR-ASSOCIATED MACROPHAGES IN GLIOBLASTOMA

胶质母细胞瘤 癌症研究 医学
作者
Xue Cai,Ammarina Beumer‐Chuwonpad,Bart A. Westerman,Jesús G. Vallejo
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_5): v35-v35
标识
DOI:10.1093/neuonc/noae144.108
摘要

Abstract BACKGROUND Glioblastoma (GBM) is the most common and extremely aggressive primary tumor of the central nervous system. Tumor-associated macrophages (TAM) can take up around 50% of cells in the tumor microenvironment (TME) of GBM and are thought to play a role in therapy resistance by creating an immunosuppressive TME. Researchers have used the M1/M2 dichotomy to describe the pro- and anti-inflammatory states of TAM, respectively. However, an expanding number of studies have found that this classification strategy oversimplifies the nature of TAM as seen in patients. Therefore, a more comprehensive strategy to represent the continuous spectrum of cellular states of TAM is essential. In this study, we aim to identify the cellular states of TAM, and further explore their impact on clinical outcomes and the TME. MATERIAL AND METHODS A bioinformatic pipeline based on principal component analysis was developed to identify the cellular states of TAM, which addressed the high inter-tumoral heterogeneity of GBM. A public Image Mass Cytometry dataset is used to verify the existence of the TAM states. The correlation analysis and survival analysis were conducted to identify the clinical relevance of the TAM states. Three spatial transcriptomic datasets were used to explore the role of these TAM states in the TME. A vessel/neuron impact index was developed to describe the impact of vessel/neuron on the TME. An 8-color multiplex immunohistochemistry is currently being developed to explore the role of VIM-TAM in the TME with spatial analysis in our cohort with 74 GBM patients. RESULTS Four public GBM scRNA-seq datasets with 94 samples were input into our pipeline. Four TAM states together with a proliferating state were identified: HLA-TAM (HLA-DR, SPP1, APOE, TREM2, C3, CD74), VIM-TAM (VIM, S100A4/6/10, CD44), IL1B-TAM (IL1B, CCL3, CD83), and HSP-TAM (HSP90AA1, BAG3). By mapping TAMs into a 3D plot based on these state scores, we revealed a continuous spectrum of TAM. Prognosis analysis found that the mean IL1B-TAM score showed a protective effect for OS (P = 0.065), while the mean VIM-TAM score had a risk impact on PFS (P = 0.045). Spatial transcriptomic analysis showed that the VIM-TAM is negatively correlated with neural-progenitor-like cancer cells and the neuron impact index. CONCLUSION A continuous spectrum of TAM could be described by these 4 identified TAM states. The IL1B-TAM and the VIM-TAM are predictors for OS and PFS, respectively. Also, the VIM-TAM is related to NPC-like cancer cells and neurons in the TME.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大胆浩然发布了新的文献求助30
刚刚
orixero应助荼蘼如雪采纳,获得10
1秒前
2秒前
领导范儿应助六水居士采纳,获得10
2秒前
坚定语蕊完成签到,获得积分10
3秒前
6秒前
笑笑发布了新的文献求助10
6秒前
6秒前
6秒前
万能图书馆应助思睿拜采纳,获得10
7秒前
重要的长颈鹿完成签到,获得积分10
9秒前
liuxiang发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
浚承完成签到,获得积分10
13秒前
爻炚完成签到 ,获得积分10
13秒前
共享精神应助汐月采纳,获得10
15秒前
打打应助笑笑采纳,获得10
15秒前
荼蘼如雪发布了新的文献求助10
16秒前
18秒前
wuzhihong完成签到,获得积分10
18秒前
big佳发布了新的文献求助10
19秒前
科研通AI2S应助CJZ采纳,获得10
19秒前
20秒前
21秒前
v_1155完成签到 ,获得积分10
21秒前
lg20010419完成签到,获得积分10
24秒前
24秒前
zhangxr发布了新的文献求助10
24秒前
JamesPei应助杨阳洋采纳,获得10
25秒前
25秒前
万能图书馆应助wzx199711采纳,获得10
27秒前
sui完成签到,获得积分10
27秒前
不准吃烤肉完成签到,获得积分10
28秒前
toking发布了新的文献求助10
28秒前
29秒前
岑666完成签到,获得积分10
30秒前
huaishang发布了新的文献求助10
31秒前
ZYH发布了新的文献求助10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145200
求助须知:如何正确求助?哪些是违规求助? 2796565
关于积分的说明 7820588
捐赠科研通 2452958
什么是DOI,文献DOI怎么找? 1305288
科研通“疑难数据库(出版商)”最低求助积分说明 627466
版权声明 601464