骨骼肌
信号转导
细胞生物学
医学
化学
生物
解剖
作者
Huihuang Yang,Yingmin Li,Weihao Zhu,Xiaowei Feng,Hongjian Xin,Hao Chen,Guozhong Zhang,Min Zuo,Bin Cong,Weibo Shi
标识
DOI:10.3390/ijms252011317
摘要
Skeletal muscle contusion (SMC) is common in daily life and clinical practice, but the molecular mechanisms underlying SMC healing are unclear. Ferroptosis, a regulated cell death type, has gained attention recently. We observed iron overload in skeletal muscle following contusion through HE and Perls staining. Abnormal iron levels are highly likely to induce ferroptosis. Therefore, we aimed to explore whether iron overload after contusion leads to ferroptosis in skeletal muscle and the underlying mechanisms, which will help us understand the effects of iron abnormalities on skeletal muscle repair. Initially, we searched SMC gene expression profiles from the GEO database and used bioinformatics analysis to reveal ferroptosis occurrence. Then, we identified the gene sat1 plays an important role in this process. We further established a rat SMC model and treated rats with ferroptosis inhibitors (Ferrostatin-1, Deferoxamine). Our findings confirmed iron overload from SMC can lead to ferroptosis in rats. We also demonstrated that SAT1 can regulate ferroptosis by affecting ALOX15. Moreover, we constructed a ferroptosis L6 cell model and found that SAT1 knockdown significantly inhibited ALOX15 expression and reduced cellular lipid peroxidation. In conclusion, these results indicated ferroptosis can occur following SMC, and SAT1, as a key regulator, affects skeletal muscle injury healing by mediating high ALOX15 expression, which in turn regulates lipid peroxidation.
科研通智能强力驱动
Strongly Powered by AbleSci AI