Surfactant–Polymer Viscosity Effects on Enhanced Oil Recovery Across Pore Structures: Microfluidic Insights from Pore Scale to Darcy Scale

肺表面活性物质 提高采收率 微流控 粘度 比例(比率) 化学工程 聚合物 材料科学 多孔介质 化学 多孔性 纳米技术 复合材料 量子力学 物理 工程类
作者
Wenbin Gao,Tang Xiang,Miaomiao Xu,Yiqiang Li,Yiyan Zhong,Debin Kong,Yiping Wen,Qi Li
出处
期刊:Energy & Fuels [American Chemical Society]
标识
DOI:10.1021/acs.energyfuels.4c02531
摘要

Viscosity is a fundamental fluid property affecting the multiphase flow behavior and enhanced oil recovery (EOR) efficiency. A higher invading fluid to defending fluid viscosity ratio is often associated with a more effective invading efficiency in porous media. However, a higher viscosity ratio of displacing fluid in chemical EOR does not necessarily result in higher EOR efficiency due to pore-blocking and reservoir damage. Therefore, the optimal viscosity range varies with the pore structure and permeability. Nevertheless, the relationship between the optimal viscosity range and pore structure remains unclear. This research conducts a case study on surfactant–polymer (SP) solutions, which demonstrated success in a pilot test at Karamay conglomerate reservoirs. Microfluidics is employed to model the pore structure of sandstone and conglomeratic sandstone. Furthermore, an image-based recovery characterization algorithm is implemented to evaluate the mobilization efficiency within multisize pores. The experiments indicate a wider optimal viscosity range for conglomeratic-sandstone-structure chips than for sandstone-structure chips. The observation supports the hypothesis that the best-matched pore proportion determines the recovery factor, even in various pore structure. The optimal viscosity SP solution can maximize the EOR due to matching the highest pore proportion. Furthermore, the viscosity relational diagrams, which enable matching the most pore, are established for multipermeability reservoirs through microfluidic experiments and the developed upscaling model. The findings are significant for viscosity optimization in oil and gas recovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xkkoala完成签到 ,获得积分10
刚刚
郑嘻嘻发布了新的文献求助10
刚刚
龙龙完成签到,获得积分10
刚刚
1秒前
1秒前
爆米花应助缥缈静珊采纳,获得10
1秒前
爆米花应助认真跳跳糖采纳,获得10
1秒前
熬夜熊猫完成签到 ,获得积分10
1秒前
科目三应助kingmantj采纳,获得10
2秒前
Funny完成签到,获得积分10
2秒前
7799发布了新的文献求助10
2秒前
linus发布了新的文献求助10
2秒前
2秒前
无花果应助周正采纳,获得10
3秒前
3秒前
无花果应助Lune采纳,获得10
3秒前
wanci应助在啊采纳,获得10
3秒前
李李发布了新的文献求助30
3秒前
雁宁完成签到,获得积分10
3秒前
刘荣圣发布了新的文献求助10
3秒前
攀攀完成签到,获得积分10
4秒前
4秒前
张太岳发布了新的文献求助10
5秒前
5秒前
冷酷的松思完成签到,获得积分10
5秒前
5秒前
英吉利25发布了新的文献求助10
5秒前
徐昊完成签到,获得积分10
5秒前
dyk发布了新的文献求助10
6秒前
吕jdjshs发布了新的文献求助10
6秒前
Zhe发布了新的文献求助10
6秒前
平淡凝竹发布了新的文献求助10
6秒前
asdf完成签到,获得积分10
6秒前
6秒前
早睡早起完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
开朗香旋发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435431
求助须知:如何正确求助?哪些是违规求助? 4547484
关于积分的说明 14208774
捐赠科研通 4467686
什么是DOI,文献DOI怎么找? 2448690
邀请新用户注册赠送积分活动 1439596
关于科研通互助平台的介绍 1416204