This paper develops a completely distributed cooperative tracking control scheme for underactuated unmanned surface vessels (USVs), which is potential to perform formation tracking or transformation with local position information and partial parameter adjustment. In light of the designed edge weights and the underlying topology, each USV is capable of asymptotically tracking the reference signals generated by the virtual leader while ensuring collision-free performance throughout the entire formation process. Specifically, for each follower, a completely distributed extended state observer (ESO) is constructed to estimate the leader states, only using the self-velocity and relative position of neighbors, regardless of the velocity of neighbors and the global information of topology. Then, the energy factor is designed according to the relative displacement of neighbors, and we assign the energy factor to the edges of the local digraph of each follower to form the local weight net. The weight force generated by the local weight net enables the follower to track the leaders with preset formation configuration and avoid collisions as well. Thus, the formation security can be enhanced. Finally, theoretical analysis and numerous simulation examples are carried out to illustrate the effectiveness of the proposed scheme.