亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Performance evaluation of semi-supervised learning frameworks for multi-class weed detection

杂草 班级(哲学) 计算机科学 人工智能 机器学习 生物 农学
作者
Jiajia Li,Dong Chen,Xunyuan Yin,Zhaojian Li
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15 被引量:4
标识
DOI:10.3389/fpls.2024.1396568
摘要

Precision weed management (PWM), driven by machine vision and deep learning (DL) advancements, not only enhances agricultural product quality and optimizes crop yield but also provides a sustainable alternative to herbicide use. However, existing DL-based algorithms on weed detection are mainly developed based on supervised learning approaches, typically demanding large-scale datasets with manual-labeled annotations, which can be time-consuming and labor-intensive. As such, label-efficient learning methods, especially semi-supervised learning, have gained increased attention in the broader domain of computer vision and have demonstrated promising performance. These methods aim to utilize a small number of labeled data samples along with a great number of unlabeled samples to develop high-performing models comparable to the supervised learning counterpart trained on a large amount of labeled data samples. In this study, we assess the effectiveness of a semi-supervised learning framework for multi-class weed detection, employing two well-known object detection frameworks, namely FCOS (Fully Convolutional One-Stage Object Detection) and Faster-RCNN (Faster Region-based Convolutional Networks). Specifically, we evaluate a generalized student-teacher framework with an improved pseudo-label generation module to produce reliable pseudo-labels for the unlabeled data. To enhance generalization, an ensemble student network is employed to facilitate the training process. Experimental results show that the proposed approach is able to achieve approximately 76% and 96% detection accuracy as the supervised methods with only 10% of labeled data in CottonWeedDet3 and CottonWeedDet12, respectively. We offer access to the source code (https://github.com/JiajiaLi04/SemiWeeds), contributing a valuable resource for ongoing semi-supervised learning research in weed detection and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chiyudoubao发布了新的文献求助10
刚刚
gszy1975完成签到,获得积分10
2秒前
3秒前
5秒前
冷淡芝麻发布了新的文献求助10
5秒前
Emilia完成签到,获得积分10
5秒前
汉堡包应助lmc采纳,获得10
6秒前
兴尽晚回舟完成签到 ,获得积分10
6秒前
14秒前
chiyudoubao完成签到,获得积分10
15秒前
16秒前
24秒前
43秒前
曾先生发布了新的文献求助10
49秒前
57秒前
曾先生完成签到,获得积分10
58秒前
zhuzhu007完成签到 ,获得积分10
1分钟前
阿信发布了新的文献求助10
1分钟前
1分钟前
酷波er应助planA采纳,获得10
1分钟前
shinyuliu完成签到,获得积分10
1分钟前
tuanheqi应助outman采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
牛牛完成签到,获得积分10
1分钟前
Gilbert发布了新的文献求助10
1分钟前
hongxuezhi完成签到,获得积分10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
planA发布了新的文献求助10
1分钟前
星辰大海应助牛牛采纳,获得10
1分钟前
Gilbert完成签到,获得积分20
2分钟前
planA完成签到,获得积分10
2分钟前
眼睛大寒松完成签到,获得积分10
2分钟前
2分钟前
牛牛发布了新的文献求助10
2分钟前
2分钟前
wuhaixia完成签到,获得积分10
2分钟前
2分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248733
求助须知:如何正确求助?哪些是违规求助? 2892168
关于积分的说明 8270096
捐赠科研通 2560265
什么是DOI,文献DOI怎么找? 1388970
科研通“疑难数据库(出版商)”最低求助积分说明 650927
邀请新用户注册赠送积分活动 627823