Hemodynamic predictors of cerebral aneurysm rupture: A machine learning approach

物理 血流动力学 动脉瘤 心脏病学 内科学 医学 放射科
作者
Mostafa Zakeri,Mohammad Aziznia,A. Atef,Azadeh Jafari
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9) 被引量:1
标识
DOI:10.1063/5.0224289
摘要

Cerebral aneurysms, a common yet silent condition, affect many people worldwide. Proper treatment selection is crucial because the disease's severity guides the course of treatment. An aneurysm in the Circle of Willis is particularly concerning due to its potential for rupture, leading to severe consequences. This study aims to predict the rupture status of cerebral aneurysms using a comprehensive dataset of clinical and hemodynamic data from blood flow simulations in real three-dimensional geometries from past patients. The Carreau–Yasuda model was used to capture the effects of shear thinning, considering blood as a non-Newtonian fluid that affects the hemodynamic properties of each patient. This research provides insights to aid treatment decisions and potentially save lives. Diagnosing and predicting aneurysm rupture based solely on brain scans is challenging and unreliable. However, statistical methods and machine learning (ML) techniques can help physicians make more confident predictions and select appropriate treatments. We used five ML algorithms trained on a database of 708 cerebral aneurysms, including three clinical features and 17 hemodynamic parameters. Unlike previous studies that used fewer parameters, our comprehensive prediction approach improved prediction accuracy. Our models achieved a maximum accuracy and precision of 0.79 and a recall rate of 0.92. Given the condition's critical nature, recall is more vital than accuracy and precision, and this study achieved a fair recall score. Key features for predicting aneurysm rupture included aneurysm location, low shear area ratio, relative residence time, and turnover time, which significantly contributed to our understanding of this complex condition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
不安青牛发布了新的文献求助30
刚刚
坦率邪欢发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
2秒前
丘比特应助圣迭戈采纳,获得10
2秒前
2秒前
2秒前
sldelibra发布了新的文献求助10
3秒前
Hazel发布了新的文献求助30
3秒前
愤怒的寻梅完成签到,获得积分10
3秒前
流氓恐龙完成签到,获得积分10
3秒前
4秒前
HongMou发布了新的文献求助10
4秒前
李瑾发布了新的文献求助10
5秒前
Ly完成签到,获得积分10
5秒前
露露完成签到,获得积分10
5秒前
6秒前
远方发布了新的文献求助10
6秒前
wsqg123发布了新的文献求助10
6秒前
7秒前
深情安青应助ivvi采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
小周发布了新的文献求助10
7秒前
fedehe发布了新的文献求助10
7秒前
Rui完成签到,获得积分10
8秒前
9秒前
钟梓袄发布了新的文献求助10
9秒前
Lucas应助acb采纳,获得10
10秒前
10秒前
zhou1216完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
wjx发布了新的文献求助40
11秒前
12秒前
13秒前
远方完成签到,获得积分10
13秒前
科研通AI6.1应助小羊呀采纳,获得20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776133
求助须知:如何正确求助?哪些是违规求助? 5627943
关于积分的说明 15441360
捐赠科研通 4908366
什么是DOI,文献DOI怎么找? 2641183
邀请新用户注册赠送积分活动 1589057
关于科研通互助平台的介绍 1543812