Hemodynamic predictors of cerebral aneurysm rupture: A machine learning approach

物理 血流动力学 动脉瘤 心脏病学 内科学 医学 放射科
作者
Mostafa Zakeri,Mohammad Aziznia,A. Atef,Azadeh Jafari
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9) 被引量:1
标识
DOI:10.1063/5.0224289
摘要

Cerebral aneurysms, a common yet silent condition, affect many people worldwide. Proper treatment selection is crucial because the disease's severity guides the course of treatment. An aneurysm in the Circle of Willis is particularly concerning due to its potential for rupture, leading to severe consequences. This study aims to predict the rupture status of cerebral aneurysms using a comprehensive dataset of clinical and hemodynamic data from blood flow simulations in real three-dimensional geometries from past patients. The Carreau–Yasuda model was used to capture the effects of shear thinning, considering blood as a non-Newtonian fluid that affects the hemodynamic properties of each patient. This research provides insights to aid treatment decisions and potentially save lives. Diagnosing and predicting aneurysm rupture based solely on brain scans is challenging and unreliable. However, statistical methods and machine learning (ML) techniques can help physicians make more confident predictions and select appropriate treatments. We used five ML algorithms trained on a database of 708 cerebral aneurysms, including three clinical features and 17 hemodynamic parameters. Unlike previous studies that used fewer parameters, our comprehensive prediction approach improved prediction accuracy. Our models achieved a maximum accuracy and precision of 0.79 and a recall rate of 0.92. Given the condition's critical nature, recall is more vital than accuracy and precision, and this study achieved a fair recall score. Key features for predicting aneurysm rupture included aneurysm location, low shear area ratio, relative residence time, and turnover time, which significantly contributed to our understanding of this complex condition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AARON完成签到,获得积分20
刚刚
刚刚
mengtong发布了新的文献求助10
1秒前
柯英钊完成签到,获得积分10
2秒前
2秒前
ISLAND发布了新的文献求助10
3秒前
3秒前
AARON发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
lameliu发布了新的文献求助10
6秒前
yanting发布了新的文献求助10
7秒前
7秒前
Anna完成签到 ,获得积分10
7秒前
aaa发布了新的文献求助20
7秒前
7秒前
7秒前
8秒前
8秒前
mengtong完成签到,获得积分10
8秒前
君衡完成签到 ,获得积分10
9秒前
MISA完成签到 ,获得积分10
9秒前
Ayuan发布了新的文献求助10
10秒前
一刀完成签到,获得积分10
10秒前
12秒前
愉快洋葱发布了新的文献求助10
13秒前
13秒前
852应助唐俊杰采纳,获得10
13秒前
搞怪人雄发布了新的文献求助10
13秒前
科研通AI6应助老虎采纳,获得10
13秒前
13秒前
zouzou完成签到,获得积分10
14秒前
FartKing发布了新的文献求助10
14秒前
认真的雨琴完成签到,获得积分20
14秒前
善学以致用应助果子采纳,获得10
15秒前
xi完成签到 ,获得积分10
15秒前
ISLAND完成签到,获得积分10
15秒前
李健应助小童采纳,获得30
16秒前
梨花完成签到,获得积分10
17秒前
或许平凡发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109