Hemodynamic predictors of cerebral aneurysm rupture: A machine learning approach

物理 血流动力学 动脉瘤 心脏病学 内科学 医学 放射科
作者
Mostafa Zakeri,Mohammad Aziznia,A. Atef,Azadeh Jafari
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9) 被引量:1
标识
DOI:10.1063/5.0224289
摘要

Cerebral aneurysms, a common yet silent condition, affect many people worldwide. Proper treatment selection is crucial because the disease's severity guides the course of treatment. An aneurysm in the Circle of Willis is particularly concerning due to its potential for rupture, leading to severe consequences. This study aims to predict the rupture status of cerebral aneurysms using a comprehensive dataset of clinical and hemodynamic data from blood flow simulations in real three-dimensional geometries from past patients. The Carreau–Yasuda model was used to capture the effects of shear thinning, considering blood as a non-Newtonian fluid that affects the hemodynamic properties of each patient. This research provides insights to aid treatment decisions and potentially save lives. Diagnosing and predicting aneurysm rupture based solely on brain scans is challenging and unreliable. However, statistical methods and machine learning (ML) techniques can help physicians make more confident predictions and select appropriate treatments. We used five ML algorithms trained on a database of 708 cerebral aneurysms, including three clinical features and 17 hemodynamic parameters. Unlike previous studies that used fewer parameters, our comprehensive prediction approach improved prediction accuracy. Our models achieved a maximum accuracy and precision of 0.79 and a recall rate of 0.92. Given the condition's critical nature, recall is more vital than accuracy and precision, and this study achieved a fair recall score. Key features for predicting aneurysm rupture included aneurysm location, low shear area ratio, relative residence time, and turnover time, which significantly contributed to our understanding of this complex condition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Corioreos发布了新的文献求助10
3秒前
mobai发布了新的文献求助10
4秒前
naturehome发布了新的文献求助10
4秒前
simey完成签到,获得积分10
4秒前
yyds应助aforgemon采纳,获得50
5秒前
芜衡落砂完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
7秒前
yazhang完成签到 ,获得积分10
8秒前
碧蓝的海豚完成签到,获得积分10
8秒前
难难难完成签到,获得积分10
9秒前
高兴的斑马完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
Rimbaud完成签到 ,获得积分10
12秒前
荷塘月色应助0077采纳,获得10
13秒前
小马甲应助优美紫槐采纳,获得10
13秒前
脸小呆呆发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
zhizhizhi完成签到,获得积分10
14秒前
shyunk发布了新的文献求助10
14秒前
cc完成签到,获得积分10
15秒前
16秒前
才染发布了新的文献求助10
16秒前
16秒前
pollen06发布了新的文献求助10
17秒前
Ray发布了新的文献求助10
18秒前
成就的寄凡完成签到,获得积分10
21秒前
cccccc完成签到,获得积分10
21秒前
Song完成签到,获得积分10
21秒前
orixero应助哈哈哈哈哈哈采纳,获得10
22秒前
22秒前
23秒前
23秒前
Truman发布了新的文献求助10
23秒前
Amber发布了新的文献求助10
24秒前
Corioreos完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729522
求助须知:如何正确求助?哪些是违规求助? 5319062
关于积分的说明 15316881
捐赠科研通 4876547
什么是DOI,文献DOI怎么找? 2619420
邀请新用户注册赠送积分活动 1568947
关于科研通互助平台的介绍 1525532