Hemodynamic predictors of cerebral aneurysm rupture: A machine learning approach

物理 血流动力学 动脉瘤 心脏病学 内科学 医学 放射科
作者
Mostafa Zakeri,Mohammad Aziznia,A. Atef,Azadeh Jafari
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9)
标识
DOI:10.1063/5.0224289
摘要

Cerebral aneurysms, a common yet silent condition, affect many people worldwide. Proper treatment selection is crucial because the disease's severity guides the course of treatment. An aneurysm in the Circle of Willis is particularly concerning due to its potential for rupture, leading to severe consequences. This study aims to predict the rupture status of cerebral aneurysms using a comprehensive dataset of clinical and hemodynamic data from blood flow simulations in real three-dimensional geometries from past patients. The Carreau–Yasuda model was used to capture the effects of shear thinning, considering blood as a non-Newtonian fluid that affects the hemodynamic properties of each patient. This research provides insights to aid treatment decisions and potentially save lives. Diagnosing and predicting aneurysm rupture based solely on brain scans is challenging and unreliable. However, statistical methods and machine learning (ML) techniques can help physicians make more confident predictions and select appropriate treatments. We used five ML algorithms trained on a database of 708 cerebral aneurysms, including three clinical features and 17 hemodynamic parameters. Unlike previous studies that used fewer parameters, our comprehensive prediction approach improved prediction accuracy. Our models achieved a maximum accuracy and precision of 0.79 and a recall rate of 0.92. Given the condition's critical nature, recall is more vital than accuracy and precision, and this study achieved a fair recall score. Key features for predicting aneurysm rupture included aneurysm location, low shear area ratio, relative residence time, and turnover time, which significantly contributed to our understanding of this complex condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
杳鸢应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得30
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
argon完成签到,获得积分10
4秒前
萨特完成签到,获得积分10
4秒前
四角水发布了新的文献求助10
7秒前
阔达的太阳完成签到,获得积分10
10秒前
务实的又柔完成签到,获得积分10
10秒前
Bressanone发布了新的文献求助10
11秒前
12秒前
nickel完成签到,获得积分10
15秒前
20秒前
丁仪完成签到,获得积分10
20秒前
搜集达人应助--采纳,获得10
21秒前
22秒前
NZH发布了新的文献求助20
23秒前
24秒前
wxx完成签到,获得积分10
25秒前
小火锅发布了新的文献求助10
26秒前
28秒前
28秒前
jj发布了新的文献求助10
30秒前
30秒前
orixero应助快乐的晓刚采纳,获得10
32秒前
33秒前
--发布了新的文献求助10
34秒前
NZH关闭了NZH文献求助
34秒前
36秒前
佳佳发布了新的文献求助10
36秒前
英姑应助jj采纳,获得10
38秒前
Renee应助Lion采纳,获得10
41秒前
完美世界应助陈隆采纳,获得10
42秒前
42秒前
xiaotianli完成签到,获得积分10
43秒前
45秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161014
求助须知:如何正确求助?哪些是违规求助? 2812392
关于积分的说明 7895364
捐赠科研通 2471232
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602094