亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hemodynamic predictors of cerebral aneurysm rupture: A machine learning approach

物理 血流动力学 动脉瘤 心脏病学 内科学 医学 放射科
作者
Mostafa Zakeri,Mohammad Aziznia,A. Atef,Azadeh Jafari
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9) 被引量:1
标识
DOI:10.1063/5.0224289
摘要

Cerebral aneurysms, a common yet silent condition, affect many people worldwide. Proper treatment selection is crucial because the disease's severity guides the course of treatment. An aneurysm in the Circle of Willis is particularly concerning due to its potential for rupture, leading to severe consequences. This study aims to predict the rupture status of cerebral aneurysms using a comprehensive dataset of clinical and hemodynamic data from blood flow simulations in real three-dimensional geometries from past patients. The Carreau–Yasuda model was used to capture the effects of shear thinning, considering blood as a non-Newtonian fluid that affects the hemodynamic properties of each patient. This research provides insights to aid treatment decisions and potentially save lives. Diagnosing and predicting aneurysm rupture based solely on brain scans is challenging and unreliable. However, statistical methods and machine learning (ML) techniques can help physicians make more confident predictions and select appropriate treatments. We used five ML algorithms trained on a database of 708 cerebral aneurysms, including three clinical features and 17 hemodynamic parameters. Unlike previous studies that used fewer parameters, our comprehensive prediction approach improved prediction accuracy. Our models achieved a maximum accuracy and precision of 0.79 and a recall rate of 0.92. Given the condition's critical nature, recall is more vital than accuracy and precision, and this study achieved a fair recall score. Key features for predicting aneurysm rupture included aneurysm location, low shear area ratio, relative residence time, and turnover time, which significantly contributed to our understanding of this complex condition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
matrixu完成签到,获得积分10
2秒前
3秒前
5秒前
研友发布了新的文献求助10
6秒前
Marshall发布了新的文献求助10
8秒前
9秒前
劉浏琉应助科研通管家采纳,获得10
10秒前
劉浏琉应助科研通管家采纳,获得10
10秒前
qqx应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
luohao完成签到,获得积分10
14秒前
chenaio发布了新的文献求助10
16秒前
orixero应助研友采纳,获得10
17秒前
大模型应助善良的花菜采纳,获得10
19秒前
积极盼晴完成签到,获得积分10
24秒前
小夜子完成签到 ,获得积分10
25秒前
chenaio完成签到,获得积分10
35秒前
35秒前
37秒前
情怀应助yunshui采纳,获得10
39秒前
aaa发布了新的文献求助10
41秒前
凉的白开完成签到,获得积分10
1分钟前
andrele发布了新的文献求助10
1分钟前
和风完成签到 ,获得积分10
1分钟前
CCS完成签到 ,获得积分10
1分钟前
SCI的芷蝶完成签到 ,获得积分10
1分钟前
1分钟前
aaa发布了新的文献求助10
1分钟前
自由岛发布了新的文献求助10
1分钟前
酷波er应助科研小白采纳,获得10
1分钟前
1分钟前
斯文败类应助aaa采纳,获得10
1分钟前
MCCCCC_6发布了新的文献求助10
1分钟前
michael完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
酷酷翅膀发布了新的文献求助10
2分钟前
xuan发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788346
求助须知:如何正确求助?哪些是违规求助? 5706422
关于积分的说明 15473418
捐赠科研通 4916427
什么是DOI,文献DOI怎么找? 2646333
邀请新用户注册赠送积分活动 1593998
关于科研通互助平台的介绍 1548436