Hemodynamic predictors of cerebral aneurysm rupture: A machine learning approach

物理 血流动力学 动脉瘤 心脏病学 内科学 医学 放射科
作者
Mostafa Zakeri,Mohammad Aziznia,A. Atef,Azadeh Jafari
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9) 被引量:1
标识
DOI:10.1063/5.0224289
摘要

Cerebral aneurysms, a common yet silent condition, affect many people worldwide. Proper treatment selection is crucial because the disease's severity guides the course of treatment. An aneurysm in the Circle of Willis is particularly concerning due to its potential for rupture, leading to severe consequences. This study aims to predict the rupture status of cerebral aneurysms using a comprehensive dataset of clinical and hemodynamic data from blood flow simulations in real three-dimensional geometries from past patients. The Carreau–Yasuda model was used to capture the effects of shear thinning, considering blood as a non-Newtonian fluid that affects the hemodynamic properties of each patient. This research provides insights to aid treatment decisions and potentially save lives. Diagnosing and predicting aneurysm rupture based solely on brain scans is challenging and unreliable. However, statistical methods and machine learning (ML) techniques can help physicians make more confident predictions and select appropriate treatments. We used five ML algorithms trained on a database of 708 cerebral aneurysms, including three clinical features and 17 hemodynamic parameters. Unlike previous studies that used fewer parameters, our comprehensive prediction approach improved prediction accuracy. Our models achieved a maximum accuracy and precision of 0.79 and a recall rate of 0.92. Given the condition's critical nature, recall is more vital than accuracy and precision, and this study achieved a fair recall score. Key features for predicting aneurysm rupture included aneurysm location, low shear area ratio, relative residence time, and turnover time, which significantly contributed to our understanding of this complex condition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合适一斩发布了新的文献求助10
刚刚
sj发布了新的文献求助10
1秒前
英吉利25发布了新的文献求助10
1秒前
爆米花应助wwl01034采纳,获得10
1秒前
2秒前
枫星羽完成签到,获得积分10
2秒前
2秒前
CodeCraft应助小黑板采纳,获得10
2秒前
3秒前
玄一发布了新的文献求助10
4秒前
眯眯眼的忆山完成签到,获得积分20
6秒前
FashionBoy应助dw1234采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
manjusaka发布了新的文献求助10
7秒前
黑熊精发布了新的文献求助10
8秒前
DK完成签到,获得积分10
8秒前
langwang完成签到,获得积分0
8秒前
鲨鱼发布了新的文献求助10
8秒前
完美世界应助Rui采纳,获得10
9秒前
10秒前
科研通AI6应助读书的时候采纳,获得10
10秒前
南湖完成签到 ,获得积分10
10秒前
11秒前
11秒前
Akim应助Z丶采纳,获得10
12秒前
12秒前
等待凡英发布了新的文献求助30
14秒前
爆米花应助平淡面包采纳,获得30
15秒前
12345发布了新的文献求助10
16秒前
脑洞疼应助青栞采纳,获得10
16秒前
无极微光应助不会取名字采纳,获得20
16秒前
小蘑菇应助slp123456采纳,获得10
17秒前
彭于晏应助恩恩天天开心采纳,获得10
17秒前
机灵采萱完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
脚踏实地完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720392
求助须知:如何正确求助?哪些是违规求助? 5259964
关于积分的说明 15291027
捐赠科研通 4869813
什么是DOI,文献DOI怎么找? 2615036
邀请新用户注册赠送积分活动 1565022
关于科研通互助平台的介绍 1522160