Hemodynamic predictors of cerebral aneurysm rupture: A machine learning approach

物理 血流动力学 动脉瘤 心脏病学 内科学 医学 放射科
作者
Mostafa Zakeri,Mohammad Aziznia,A. Atef,Azadeh Jafari
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9) 被引量:1
标识
DOI:10.1063/5.0224289
摘要

Cerebral aneurysms, a common yet silent condition, affect many people worldwide. Proper treatment selection is crucial because the disease's severity guides the course of treatment. An aneurysm in the Circle of Willis is particularly concerning due to its potential for rupture, leading to severe consequences. This study aims to predict the rupture status of cerebral aneurysms using a comprehensive dataset of clinical and hemodynamic data from blood flow simulations in real three-dimensional geometries from past patients. The Carreau–Yasuda model was used to capture the effects of shear thinning, considering blood as a non-Newtonian fluid that affects the hemodynamic properties of each patient. This research provides insights to aid treatment decisions and potentially save lives. Diagnosing and predicting aneurysm rupture based solely on brain scans is challenging and unreliable. However, statistical methods and machine learning (ML) techniques can help physicians make more confident predictions and select appropriate treatments. We used five ML algorithms trained on a database of 708 cerebral aneurysms, including three clinical features and 17 hemodynamic parameters. Unlike previous studies that used fewer parameters, our comprehensive prediction approach improved prediction accuracy. Our models achieved a maximum accuracy and precision of 0.79 and a recall rate of 0.92. Given the condition's critical nature, recall is more vital than accuracy and precision, and this study achieved a fair recall score. Key features for predicting aneurysm rupture included aneurysm location, low shear area ratio, relative residence time, and turnover time, which significantly contributed to our understanding of this complex condition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠檬陈完成签到,获得积分10
1秒前
1秒前
呆桃完成签到,获得积分10
1秒前
1秒前
1秒前
大个应助aaaaa采纳,获得10
2秒前
2秒前
哈哈哈完成签到,获得积分10
2秒前
关关过完成签到,获得积分0
2秒前
shong发布了新的文献求助10
2秒前
爱笑完成签到,获得积分10
2秒前
3秒前
流云发布了新的文献求助10
3秒前
111111完成签到,获得积分10
3秒前
充电宝应助风中的天菱采纳,获得10
3秒前
小鱼儿完成签到,获得积分10
3秒前
wl完成签到 ,获得积分10
3秒前
细心南风发布了新的文献求助10
3秒前
八乙基环辛四烯完成签到,获得积分10
4秒前
4秒前
4秒前
为神指路完成签到,获得积分10
4秒前
eeven完成签到 ,获得积分10
4秒前
研友_xnEOX8完成签到,获得积分10
4秒前
呆桃发布了新的文献求助10
5秒前
he大海贼完成签到,获得积分10
5秒前
吴小根发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
小北发布了新的文献求助30
5秒前
自觉雨文发布了新的文献求助10
5秒前
嘤嘤完成签到,获得积分10
6秒前
木香完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
一投就中发布了新的文献求助10
8秒前
现代的垣完成签到,获得积分10
8秒前
deefeffe完成签到,获得积分10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297