Hemodynamic predictors of cerebral aneurysm rupture: A machine learning approach

物理 血流动力学 动脉瘤 心脏病学 内科学 医学 放射科
作者
Mostafa Zakeri,Mohammad Aziznia,A. Atef,Azadeh Jafari
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9) 被引量:1
标识
DOI:10.1063/5.0224289
摘要

Cerebral aneurysms, a common yet silent condition, affect many people worldwide. Proper treatment selection is crucial because the disease's severity guides the course of treatment. An aneurysm in the Circle of Willis is particularly concerning due to its potential for rupture, leading to severe consequences. This study aims to predict the rupture status of cerebral aneurysms using a comprehensive dataset of clinical and hemodynamic data from blood flow simulations in real three-dimensional geometries from past patients. The Carreau–Yasuda model was used to capture the effects of shear thinning, considering blood as a non-Newtonian fluid that affects the hemodynamic properties of each patient. This research provides insights to aid treatment decisions and potentially save lives. Diagnosing and predicting aneurysm rupture based solely on brain scans is challenging and unreliable. However, statistical methods and machine learning (ML) techniques can help physicians make more confident predictions and select appropriate treatments. We used five ML algorithms trained on a database of 708 cerebral aneurysms, including three clinical features and 17 hemodynamic parameters. Unlike previous studies that used fewer parameters, our comprehensive prediction approach improved prediction accuracy. Our models achieved a maximum accuracy and precision of 0.79 and a recall rate of 0.92. Given the condition's critical nature, recall is more vital than accuracy and precision, and this study achieved a fair recall score. Key features for predicting aneurysm rupture included aneurysm location, low shear area ratio, relative residence time, and turnover time, which significantly contributed to our understanding of this complex condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助真君山山长采纳,获得10
1秒前
weiyi完成签到,获得积分10
1秒前
鸭鸭完成签到,获得积分20
4秒前
6秒前
6秒前
8秒前
9秒前
10秒前
找不完完成签到,获得积分10
10秒前
翊远完成签到,获得积分10
11秒前
淡淡代玉发布了新的文献求助30
12秒前
fufu发布了新的文献求助10
12秒前
谨谨谨发布了新的文献求助10
14秒前
Tigher完成签到,获得积分10
15秒前
真君山山长完成签到,获得积分10
16秒前
研友_8R3XdL完成签到,获得积分10
16秒前
桐桐应助mashichuang采纳,获得10
17秒前
alho完成签到 ,获得积分10
17秒前
深情安青应助清脆的绮梅采纳,获得10
17秒前
xyb关闭了xyb文献求助
17秒前
共渡完成签到,获得积分10
19秒前
20秒前
MOMO完成签到 ,获得积分10
20秒前
L912294993完成签到,获得积分10
22秒前
sarach发布了新的文献求助30
24秒前
25秒前
高兴的忆曼完成签到,获得积分10
25秒前
堕落叔叔发布了新的文献求助30
27秒前
28秒前
29秒前
胡图图完成签到,获得积分10
29秒前
共享精神应助科研通管家采纳,获得10
30秒前
情怀应助科研通管家采纳,获得10
30秒前
30秒前
深情安青应助科研通管家采纳,获得10
30秒前
情怀应助科研通管家采纳,获得10
30秒前
斯文败类应助科研通管家采纳,获得10
30秒前
共享精神应助科研通管家采纳,获得10
30秒前
领导范儿应助科研通管家采纳,获得10
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997687
求助须知:如何正确求助?哪些是违规求助? 3537226
关于积分的说明 11271044
捐赠科研通 3276377
什么是DOI,文献DOI怎么找? 1806965
邀请新用户注册赠送积分活动 883609
科研通“疑难数据库(出版商)”最低求助积分说明 809975