Hemodynamic predictors of cerebral aneurysm rupture: A machine learning approach

物理 血流动力学 动脉瘤 心脏病学 内科学 医学 放射科
作者
Mostafa Zakeri,Mohammad Aziznia,A. Atef,Azadeh Jafari
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9) 被引量:1
标识
DOI:10.1063/5.0224289
摘要

Cerebral aneurysms, a common yet silent condition, affect many people worldwide. Proper treatment selection is crucial because the disease's severity guides the course of treatment. An aneurysm in the Circle of Willis is particularly concerning due to its potential for rupture, leading to severe consequences. This study aims to predict the rupture status of cerebral aneurysms using a comprehensive dataset of clinical and hemodynamic data from blood flow simulations in real three-dimensional geometries from past patients. The Carreau–Yasuda model was used to capture the effects of shear thinning, considering blood as a non-Newtonian fluid that affects the hemodynamic properties of each patient. This research provides insights to aid treatment decisions and potentially save lives. Diagnosing and predicting aneurysm rupture based solely on brain scans is challenging and unreliable. However, statistical methods and machine learning (ML) techniques can help physicians make more confident predictions and select appropriate treatments. We used five ML algorithms trained on a database of 708 cerebral aneurysms, including three clinical features and 17 hemodynamic parameters. Unlike previous studies that used fewer parameters, our comprehensive prediction approach improved prediction accuracy. Our models achieved a maximum accuracy and precision of 0.79 and a recall rate of 0.92. Given the condition's critical nature, recall is more vital than accuracy and precision, and this study achieved a fair recall score. Key features for predicting aneurysm rupture included aneurysm location, low shear area ratio, relative residence time, and turnover time, which significantly contributed to our understanding of this complex condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
in发布了新的文献求助30
刚刚
1秒前
斯文败类应助尊敬的雪珍采纳,获得10
1秒前
2秒前
Acc完成签到,获得积分10
2秒前
wanci应助白兔采纳,获得10
3秒前
XiYang完成签到,获得积分20
3秒前
传奇3应助volunteer采纳,获得10
3秒前
cc完成签到 ,获得积分10
3秒前
4秒前
大个应助彳亍采纳,获得10
5秒前
5秒前
白蒲桃发布了新的文献求助10
7秒前
liuhaha发布了新的文献求助30
7秒前
8秒前
共享精神应助高冷采纳,获得10
9秒前
胡帅完成签到,获得积分20
9秒前
谢涛发布了新的文献求助10
9秒前
飞白完成签到,获得积分20
11秒前
11秒前
11秒前
星空办公室完成签到,获得积分10
12秒前
12秒前
13秒前
sytbb发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
15秒前
飞白发布了新的文献求助10
15秒前
彳亍完成签到,获得积分10
15秒前
正道魁首发布了新的文献求助10
16秒前
zou发布了新的文献求助10
17秒前
彳亍发布了新的文献求助10
18秒前
完美世界应助朴素雪兰采纳,获得10
18秒前
小邱同学完成签到 ,获得积分10
20秒前
volunteer发布了新的文献求助10
20秒前
veysa发布了新的文献求助10
20秒前
soyorin发布了新的文献求助10
21秒前
科研通AI5应助白蒲桃采纳,获得10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133459
求助须知:如何正确求助?哪些是违规求助? 4334575
关于积分的说明 13504156
捐赠科研通 4171584
什么是DOI,文献DOI怎么找? 2287247
邀请新用户注册赠送积分活动 1288151
关于科研通互助平台的介绍 1228995