Hemodynamic predictors of cerebral aneurysm rupture: A machine learning approach

物理 血流动力学 动脉瘤 心脏病学 内科学 医学 放射科
作者
Mostafa Zakeri,Mohammad Aziznia,A. Atef,Azadeh Jafari
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9) 被引量:1
标识
DOI:10.1063/5.0224289
摘要

Cerebral aneurysms, a common yet silent condition, affect many people worldwide. Proper treatment selection is crucial because the disease's severity guides the course of treatment. An aneurysm in the Circle of Willis is particularly concerning due to its potential for rupture, leading to severe consequences. This study aims to predict the rupture status of cerebral aneurysms using a comprehensive dataset of clinical and hemodynamic data from blood flow simulations in real three-dimensional geometries from past patients. The Carreau–Yasuda model was used to capture the effects of shear thinning, considering blood as a non-Newtonian fluid that affects the hemodynamic properties of each patient. This research provides insights to aid treatment decisions and potentially save lives. Diagnosing and predicting aneurysm rupture based solely on brain scans is challenging and unreliable. However, statistical methods and machine learning (ML) techniques can help physicians make more confident predictions and select appropriate treatments. We used five ML algorithms trained on a database of 708 cerebral aneurysms, including three clinical features and 17 hemodynamic parameters. Unlike previous studies that used fewer parameters, our comprehensive prediction approach improved prediction accuracy. Our models achieved a maximum accuracy and precision of 0.79 and a recall rate of 0.92. Given the condition's critical nature, recall is more vital than accuracy and precision, and this study achieved a fair recall score. Key features for predicting aneurysm rupture included aneurysm location, low shear area ratio, relative residence time, and turnover time, which significantly contributed to our understanding of this complex condition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
躬身入局发布了新的文献求助100
1秒前
mmm发布了新的文献求助10
2秒前
888发布了新的文献求助10
2秒前
cassie发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
zhangcz完成签到,获得积分10
7秒前
张津铭完成签到 ,获得积分10
7秒前
桐桐应助露桥闻笛采纳,获得30
8秒前
tao发布了新的文献求助10
9秒前
HJJHJH发布了新的文献求助10
9秒前
天天向上完成签到,获得积分10
9秒前
顾矜应助777采纳,获得10
9秒前
熙20团宝儿完成签到,获得积分10
10秒前
10秒前
戚平安发布了新的文献求助10
10秒前
10秒前
天天向上发布了新的文献求助10
11秒前
12秒前
12秒前
曾珍完成签到 ,获得积分10
12秒前
尤静柏发布了新的文献求助10
14秒前
1.1发布了新的文献求助10
16秒前
昇H发布了新的文献求助10
16秒前
17秒前
tao完成签到,获得积分10
17秒前
18秒前
小J完成签到 ,获得积分10
18秒前
18秒前
LG应助xiongwenlei采纳,获得30
18秒前
zz完成签到,获得积分20
19秒前
量子星尘发布了新的文献求助10
19秒前
子怡发布了新的文献求助10
19秒前
六一关注了科研通微信公众号
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642428
求助须知:如何正确求助?哪些是违规求助? 4758826
关于积分的说明 15017538
捐赠科研通 4801013
什么是DOI,文献DOI怎么找? 2566317
邀请新用户注册赠送积分活动 1524459
关于科研通互助平台的介绍 1483969