Multiple Time Scales and Normal Form of Hopf Bifurcation in a Delayed Reaction–Diffusion–Advection System

霍普夫分叉 平流 反应扩散系统 数学 分叉 鞍结分岔 扩散 数学分析 分叉理论的生物学应用 干草叉分叉 统计物理学 物理 机械 经典力学 热力学 非线性系统 量子力学
作者
Hongfan Lu,Yuxiao Guo
出处
期刊:International Journal of Bifurcation and Chaos [World Scientific]
标识
DOI:10.1142/s0218127424501554
摘要

In the reaction–diffusion systems, the Laplacian is usually a self-adjoint operator. Incorporating advection terms generally destroys this and yields a quite complicated decomposition of phase space in the Center Manifold Reduction (CMR) method. Considering that the Multiple Time Scales (MTS) method can be directly applied to bifurcation analysis and normal form derivation based on algebraic operations, and the computational process is relatively universal, we apply the MTS method to analyze the Hopf bifurcation problem of reaction–diffusion–advection systems with time delay. First, we introduce the MTS method for the system with a specific boundary condition, which is used to derive the normal form of Hopf bifurcation. Calculating the normal form using the MTS method can be summarized as determining the bifurcation parameters, conducting Taylor expansion based on the MTS idea, and eliminating secular terms. Then, the key coefficients in the normal form are explicitly given, which are also compared with the results obtained by the CMR method, and both methods lead to the same bifurcation results. Finally, we use the MTS method to calculate the normal form of Hopf bifurcation for a predator–prey model with mixed boundary conditions. We find that the spatially nonhomogeneous periodic solutions appear near the equilibrium in the system when the time delay exceeds the critical value, and the theoretical results are illustrated by numerical simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zmick完成签到,获得积分10
刚刚
科研通AI6应助猪猪hero采纳,获得10
1秒前
absb发布了新的文献求助10
1秒前
2秒前
Jasper应助如意元霜采纳,获得10
2秒前
wanci应助遇见采纳,获得10
2秒前
149865完成签到,获得积分10
2秒前
Mercury完成签到 ,获得积分10
2秒前
2秒前
3秒前
4秒前
4秒前
吴海娇完成签到,获得积分10
5秒前
6秒前
149865发布了新的文献求助10
7秒前
7秒前
8秒前
lxq给lxq的求助进行了留言
9秒前
orixero应助absb采纳,获得10
9秒前
图图完成签到,获得积分20
9秒前
yufeng完成签到,获得积分10
10秒前
10秒前
10秒前
Herman发布了新的文献求助30
10秒前
xinxinxin完成签到,获得积分20
10秒前
ding应助yoyo采纳,获得10
10秒前
10秒前
zzz发布了新的文献求助10
11秒前
折纸发布了新的文献求助10
11秒前
勤恳的宛菡完成签到,获得积分10
11秒前
11秒前
CipherSage应助好运收藏家采纳,获得10
11秒前
12秒前
12秒前
共享精神应助常丽芳采纳,获得10
12秒前
changping应助安安采纳,获得20
12秒前
12秒前
SciGPT应助wu采纳,获得10
12秒前
12秒前
喜东东完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285299
求助须知:如何正确求助?哪些是违规求助? 4438487
关于积分的说明 13817325
捐赠科研通 4319766
什么是DOI,文献DOI怎么找? 2371149
邀请新用户注册赠送积分活动 1366693
关于科研通互助平台的介绍 1330152