毒性
体内
外推法
体外
风险评估
纳米材料
化学
计算生物学
生物
计算机科学
材料科学
生物技术
纳米技术
生物化学
数学
统计
计算机安全
有机化学
作者
Rahmasari Nur Azizah,G Verheyen,Ziv Shkedy,Sabine Van Miert
出处
期刊:NanoImpact
[Elsevier]
日期:2024-07-01
卷期号:: 100524-100524
标识
DOI:10.1016/j.impact.2024.100524
摘要
Nanomaterials are increasingly used in many applications due to their enhanced properties. To ensure their safety for humans and the environment, nanomaterials need to be evaluated for their potential risk. The risk assessment analysis on the nanomaterials based on animal or in vivo studies is accompanied by several concerns, including animal welfare, time and cost needed for the studies. Therefore, incorporating in vitro studies in the risk assessment process is increasingly considered. To be able to analyze the potential risk of nanomaterial to human health, there are factors to take into account. Utilizing in vitro data in the risk assessment analysis requires methods that can be used to translate in vitro data to predict in vivo phenomena (in vitro-in vivo extrapolation (IVIVE) methods) to be incorporated, to obtain a more accurate result. Apart from the experiments and species conversion (for example, translation between the cell culture, animal and human), the challenge also includes the unique properties of nanomaterials that might cause them to behave differently compared to the same materials in a bulk form. This overview presents the IVIVE techniques that are developed to extrapolate pharmacokinetics data or doses. A brief example of the IVIVE methods for chemicals is provided, followed by a more detailed summary of available IVIVE methods applied to nanomaterials. The IVIVE techniques discussed include the comparison between in vitro and in vivo studies, methods to rene the dose metric or the in vitro models, allometric approach, mechanistic modeling, Multiple-Path Particle Dosimetry (MPPD), methods using organ burden data and also approaches that are currently being developed.
科研通智能强力驱动
Strongly Powered by AbleSci AI