Overview of in vitro-in vivo extrapolation approaches for the risk assessment of nanomaterial toxicity

毒性 体内 外推法 体外 风险评估 纳米材料 化学 计算生物学 生物 计算机科学 材料科学 生物技术 纳米技术 生物化学 数学 统计 计算机安全 有机化学
作者
Rahmasari Nur Azizah,G Verheyen,Ziv Shkedy,Sabine Van Miert
出处
期刊:NanoImpact [Elsevier]
卷期号:: 100524-100524
标识
DOI:10.1016/j.impact.2024.100524
摘要

Nanomaterials are increasingly used in many applications due to their enhanced properties. To ensure their safety for humans and the environment, nanomaterials need to be evaluated for their potential risk. The risk assessment analysis on the nanomaterials based on animal or in vivo studies is accompanied by several concerns, including animal welfare, time and cost needed for the studies. Therefore, incorporating in vitro studies in the risk assessment process is increasingly considered. To be able to analyze the potential risk of nanomaterial to human health, there are factors to take into account. Utilizing in vitro data in the risk assessment analysis requires methods that can be used to translate in vitro data to predict in vivo phenomena (in vitro-in vivo extrapolation (IVIVE) methods) to be incorporated, to obtain a more accurate result. Apart from the experiments and species conversion (for example, translation between the cell culture, animal and human), the challenge also includes the unique properties of nanomaterials that might cause them to behave differently compared to the same materials in a bulk form. This overview presents the IVIVE techniques that are developed to extrapolate pharmacokinetics data or doses. A brief example of the IVIVE methods for chemicals is provided, followed by a more detailed summary of available IVIVE methods applied to nanomaterials. The IVIVE techniques discussed include the comparison between in vitro and in vivo studies, methods to rene the dose metric or the in vitro models, allometric approach, mechanistic modeling, Multiple-Path Particle Dosimetry (MPPD), methods using organ burden data and also approaches that are currently being developed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AU发布了新的文献求助10
2秒前
asd发布了新的文献求助10
2秒前
3秒前
5秒前
5秒前
6秒前
香酥板栗完成签到,获得积分10
6秒前
互助遵法尚德应助chezi采纳,获得10
6秒前
好哒喵发布了新的文献求助10
6秒前
7秒前
8秒前
陈婷婷发布了新的文献求助10
10秒前
酷卡卡完成签到,获得积分10
10秒前
11秒前
www发布了新的文献求助10
11秒前
AYY完成签到,获得积分10
11秒前
11秒前
Orange应助赫赫采纳,获得10
13秒前
14秒前
hazardatom完成签到,获得积分10
16秒前
16秒前
长期素食发布了新的文献求助10
17秒前
ured发布了新的文献求助20
19秒前
123456完成签到,获得积分0
21秒前
24秒前
25秒前
科研通AI2S应助王一刀采纳,获得10
27秒前
隐形曼青应助ured采纳,获得10
28秒前
Louis发布了新的文献求助10
28秒前
AU发布了新的文献求助10
28秒前
MOON完成签到,获得积分10
29秒前
科研顺利完成签到 ,获得积分10
29秒前
29秒前
大牛完成签到,获得积分10
30秒前
30秒前
33秒前
34秒前
畅快新之发布了新的文献求助10
36秒前
37秒前
阳光大有应助侯MM采纳,获得10
38秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774894
关于积分的说明 7724629
捐赠科研通 2430451
什么是DOI,文献DOI怎么找? 1291102
科研通“疑难数据库(出版商)”最低求助积分说明 622063
版权声明 600323