Stepwise Transfer Learning for Expert-level Pediatric Brain Tumor MRI Segmentation in a Limited Data Scenario

学习迁移 分割 人工智能 计算机科学 机器学习 医学 自然语言处理 医学物理学
作者
Aidan Boyd,Zezhong Ye,Sanjay P. Prabhu,Michael C. Tjong,Yining Zha,Anna Zapaishchykova,Sridhar Vajapeyam,Paul J. Catalano,Hasaan Hayat,Rishi Chopra,Kevin X. Liu,Ali Nabavizadeh,Adam C Resnick,Sabine Mueller,Daphne A. Haas‐Kogan,Hugo J.W.L. Aerts,Tina Young Poussaint,Benjamin H. Kann
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (4) 被引量:5
标识
DOI:10.1148/ryai.230254
摘要

Purpose To develop, externally test, and evaluate clinical acceptability of a deep learning pediatric brain tumor segmentation model using stepwise transfer learning. Materials and Methods In this retrospective study, the authors leveraged two T2-weighted MRI datasets (May 2001 through December 2015) from a national brain tumor consortium (n = 184; median age, 7 years [range, 1-23 years]; 94 male patients) and a pediatric cancer center (n = 100; median age, 8 years [range, 1-19 years]; 47 male patients) to develop and evaluate deep learning neural networks for pediatric low-grade glioma segmentation using a stepwise transfer learning approach to maximize performance in a limited data scenario. The best model was externally tested on an independent test set and subjected to randomized blinded evaluation by three clinicians, wherein they assessed clinical acceptability of expert- and artificial intelligence (AI)-generated segmentations via 10-point Likert scales and Turing tests. Results The best AI model used in-domain stepwise transfer learning (median Dice score coefficient, 0.88 [IQR, 0.72-0.91] vs 0.812 [IQR, 0.56-0.89] for baseline model; P = .049). With external testing, the AI model yielded excellent accuracy using reference standards from three clinical experts (median Dice similarity coefficients: expert 1, 0.83 [IQR, 0.75-0.90]; expert 2, 0.81 [IQR, 0.70-0.89]; expert 3, 0.81 [IQR, 0.68-0.88]; mean accuracy, 0.82). For clinical benchmarking (n = 100 scans), experts rated AI-based segmentations higher on average compared with other experts (median Likert score, 9 [IQR, 7-9] vs 7 [IQR 7-9]) and rated more AI segmentations as clinically acceptable (80.2% vs 65.4%). Experts correctly predicted the origin of AI segmentations in an average of 26.0% of cases. Conclusion Stepwise transfer learning enabled expert-level automated pediatric brain tumor autosegmentation and volumetric measurement with a high level of clinical acceptability. Keywords: Stepwise Transfer Learning, Pediatric Brain Tumors, MRI Segmentation, Deep Learning Supplemental material is available for this article. © RSNA, 2024.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
受伤金鑫发布了新的文献求助10
刚刚
科研通AI5应助小小的太阳采纳,获得10
1秒前
勤奋酒窝完成签到,获得积分20
1秒前
香芋派发布了新的文献求助10
1秒前
思源应助狒狒爱学习采纳,获得10
2秒前
Hello应助liyun采纳,获得10
2秒前
2秒前
雪碧加曼妥思完成签到 ,获得积分10
2秒前
2秒前
666发布了新的文献求助10
2秒前
筱筱完成签到 ,获得积分10
2秒前
小章发布了新的文献求助10
3秒前
xin发布了新的文献求助10
3秒前
3秒前
脑洞疼应助过儿采纳,获得10
3秒前
Hello应助动听的雪曼采纳,获得10
3秒前
Jason完成签到,获得积分10
3秒前
李健应助点点点采纳,获得10
4秒前
小孟吖发布了新的文献求助10
5秒前
Hungrylunch完成签到,获得积分0
5秒前
5秒前
缓慢如南应助ddfighting采纳,获得10
5秒前
充电宝应助鳗鱼三毒采纳,获得10
5秒前
哈哈哈哈发布了新的文献求助10
6秒前
111发布了新的文献求助30
6秒前
幸运兔完成签到,获得积分20
7秒前
科研通AI5应助害怕的身影采纳,获得10
7秒前
7秒前
aa应助AU采纳,获得10
8秒前
8秒前
HY发布了新的文献求助10
8秒前
RBbird关注了科研通微信公众号
8秒前
小章完成签到,获得积分10
9秒前
9秒前
科研通AI5应助yeah采纳,获得10
10秒前
六斤米完成签到,获得积分10
11秒前
11秒前
12258发布了新的文献求助10
11秒前
善学以致用应助呼叫554采纳,获得10
11秒前
科研通AI5应助li采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560631
求助须知:如何正确求助?哪些是违规求助? 3134599
关于积分的说明 9408231
捐赠科研通 2834785
什么是DOI,文献DOI怎么找? 1558213
邀请新用户注册赠送积分活动 728009
科研通“疑难数据库(出版商)”最低求助积分说明 716667